scispace - formally typeset
Search or ask a question
Author

Anket Sharma

Bio: Anket Sharma is an academic researcher from Zhejiang A & F University. The author has contributed to research in topics: Abiotic stress & Glutathione reductase. The author has an hindex of 33, co-authored 131 publications receiving 3578 citations. Previous affiliations of Anket Sharma include DAV University & Government Degree College.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: The biochemical and molecular mechanisms related to the activation of phenylpropanoid metabolism are discussed and phenolic-mediated stress tolerance in plants is described to provide updated and brand-new information about the response of phenolics under a challenging environment.
Abstract: Phenolic compounds are an important class of plant secondary metabolites which play crucial physiological roles throughout the plant life cycle. Phenolics are produced under optimal and suboptimal conditions in plants and play key roles in developmental processes like cell division, hormonal regulation, photosynthetic activity, nutrient mineralization, and reproduction. Plants exhibit increased synthesis of polyphenols such as phenolic acids and flavonoids under abiotic stress conditions, which help the plant to cope with environmental constraints. Phenylpropanoid biosynthetic pathway is activated under abiotic stress conditions (drought, heavy metal, salinity, high/low temperature, and ultraviolet radiations) resulting in accumulation of various phenolic compounds which, among other roles, have the potential to scavenge harmful reactive oxygen species. Deepening the research focuses on the phenolic responses to abiotic stress is of great interest for the scientific community. In the present article, we discuss the biochemical and molecular mechanisms related to the activation of phenylpropanoid metabolism and we describe phenolic-mediated stress tolerance in plants. An attempt has been made to provide updated and brand-new information about the response of phenolics under a challenging environment.

802 citations

Journal ArticleDOI
21 Oct 2019
TL;DR: In this paper, an attempt has been made to critically review the global usage of different pesticides and their major adverse impacts on ecosystem, which will provide guidance for a wide range of researchers in this area.
Abstract: Pesticides are extensively used in modern agriculture and are an effective and economical way to enhance the yield quality and quantity, thus ensuring food security for the ever-growing population around the globe. Approximately, 2 million tonnes of pesticides are utilized annually worldwide, where China is the major contributing country, followed by the USA and Argentina, which is increasing rapidly. However, by the year 2020, the global pesticide usage has been estimated to increase up to 3.5 million tonnes. Although pesticides are beneficial for crop production point of view, extensive use of pesticides can possess serious consequences because of their bio-magnification and persistent nature. Diverse pesticides directly or indirectly polluted air, water, soil and overall ecosystem which cause serious health hazard for living being. In the present manuscript, an attempt has been made to critically review the global usage of different pesticides and their major adverse impacts on ecosystem, which will provide guidance for a wide range of researchers in this area.

665 citations

Journal ArticleDOI
TL;DR: Results of ingestion and dermal pathways for adults and children in the current analyzed review showed that As is the major contaminant, and remediation techniques such as the introduction of aquatic phytoremediation plant species and adsorbents should be included in land management plans in order to reduce human risks.

414 citations

Journal ArticleDOI
17 Jul 2019
TL;DR: The underlying mechanisms of phytohormone-regulated osmolyte accumulation along with their various functions in plants under stress conditions are discussed.
Abstract: Plants face a variety of abiotic stresses, which generate reactive oxygen species (ROS), and ultimately obstruct normal growth and development of plants. To prevent cellular damage caused by oxidative stress, plants accumulate certain compatible solutes known as osmolytes to safeguard the cellular machinery. The most common osmolytes that play crucial role in osmoregulation are proline, glycine-betaine, polyamines, and sugars. These compounds stabilize the osmotic differences between surroundings of cell and the cytosol. Besides, they also protect the plant cells from oxidative stress by inhibiting the production of harmful ROS like hydroxyl ions, superoxide ions, hydrogen peroxide, and other free radicals. The accumulation of osmolytes is further modulated by phytohormones like abscisic acid, brassinosteroids, cytokinins, ethylene, jasmonates, and salicylic acid. It is thus important to understand the mechanisms regulating the phytohormone-mediated accumulation of osmolytes in plants during abiotic stresses. In this review, we have discussed the underlying mechanisms of phytohormone-regulated osmolyte accumulation along with their various functions in plants under stress conditions.

376 citations

Journal ArticleDOI
TL;DR: The present review describes how different abiotic stresses can pose deleterious impacts on plant photosynthesis machinery including cellular membranes, cell division and cell elongation, biosynthesis of photosynthetic pigments, as well as electron transport chain.
Abstract: Plants encounter various abiotic stresses due to their sessile nature which include heavy metals, salt, drought, nutrient deficiency, light intensity, pesticide contamination, as well as extreme temperatures. These stresses impose major constraints limiting crop production and food security worldwide. Abiotic stresses primarily reduce the photosynthetic efficiency of plants, due to their negative consequences on chlorophyll biosynthesis, performance of the photosystems, electron transport mechanisms, gas exchange parameters, and many others. A better understanding of the photochemistry of plants under these abiotic stresses can help in the development of pragmatic interventions for managing these stresses. Interestingly, in this review, we provide an overview of insight into different mechanisms affecting the photosynthetic ability of plants in relation to these abiotic factors. The present review describes how different abiotic stresses can pose deleterious impacts on plant photosynthetic machinery including cellular membranes, cell division and cell elongation, biosynthesis of photosynthetic pigments, as well as electron transport chain. It is important to understand the detrimental impacts of various abiotic stresses for better stress management because a comprehensive understanding of plant responses has pragmatic implication for remedies and management.

321 citations


Cited by
More filters
Journal ArticleDOI

7,335 citations

01 Jan 2020
TL;DR: Prolonged viral shedding provides the rationale for a strategy of isolation of infected patients and optimal antiviral interventions in the future.
Abstract: Summary Background Since December, 2019, Wuhan, China, has experienced an outbreak of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Epidemiological and clinical characteristics of patients with COVID-19 have been reported but risk factors for mortality and a detailed clinical course of illness, including viral shedding, have not been well described. Methods In this retrospective, multicentre cohort study, we included all adult inpatients (≥18 years old) with laboratory-confirmed COVID-19 from Jinyintan Hospital and Wuhan Pulmonary Hospital (Wuhan, China) who had been discharged or had died by Jan 31, 2020. Demographic, clinical, treatment, and laboratory data, including serial samples for viral RNA detection, were extracted from electronic medical records and compared between survivors and non-survivors. We used univariable and multivariable logistic regression methods to explore the risk factors associated with in-hospital death. Findings 191 patients (135 from Jinyintan Hospital and 56 from Wuhan Pulmonary Hospital) were included in this study, of whom 137 were discharged and 54 died in hospital. 91 (48%) patients had a comorbidity, with hypertension being the most common (58 [30%] patients), followed by diabetes (36 [19%] patients) and coronary heart disease (15 [8%] patients). Multivariable regression showed increasing odds of in-hospital death associated with older age (odds ratio 1·10, 95% CI 1·03–1·17, per year increase; p=0·0043), higher Sequential Organ Failure Assessment (SOFA) score (5·65, 2·61–12·23; p Interpretation The potential risk factors of older age, high SOFA score, and d-dimer greater than 1 μg/mL could help clinicians to identify patients with poor prognosis at an early stage. Prolonged viral shedding provides the rationale for a strategy of isolation of infected patients and optimal antiviral interventions in the future. Funding Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences; National Science Grant for Distinguished Young Scholars; National Key Research and Development Program of China; The Beijing Science and Technology Project; and Major Projects of National Science and Technology on New Drug Creation and Development.

4,408 citations

Journal ArticleDOI

1,610 citations

01 Jan 2016
TL;DR: Methods Of Enzymatic Analysis is universally compatible behind any devices to read, and in the authors' digital library an online admission to it is set as public appropriately so you can download it instantly.
Abstract: Rather than enjoying a fine ebook as soon as a mug of coffee in the afternoon, instead they juggled when some harmful virus inside their computer. Methods Of Enzymatic Analysis is clear in our digital library an online admission to it is set as public appropriately you can download it instantly. Our digital library saves in complex countries, allowing you to get the most less latency period to download any of our books considering this one. Merely said, the Methods Of Enzymatic Analysis is universally compatible behind any devices to read.

1,136 citations

Journal ArticleDOI

1,100 citations