scispace - formally typeset
Search or ask a question
Author

Ann E. Visser

Bio: Ann E. Visser is an academic researcher from Savannah River National Laboratory. The author has contributed to research in topics: Ionic liquid & Hexafluorophosphate. The author has an hindex of 21, co-authored 44 publications receiving 8658 citations. Previous affiliations of Ann E. Visser include University of Alabama & Queen's University Belfast.

Papers
More filters
Journal ArticleDOI
TL;DR: A series of hydrophilic and hydrophobic 1-alkyl-3-methylimidazolium room temperature ionic liquids (RTILs) have been prepared and characterized to determine how water content, density, viscosity, surface tension, melting point, and thermal stability are affected by changes in alkyl chain length and anion.

3,469 citations

Journal ArticleDOI
TL;DR: The partitioning of simple substituted-benzene derivatives between water and the room temperature ionic liquid, butylmethylimidazolium hexafluorophosphate, is based on the solutes' charged state or relative hydrophobicity as discussed by the authors.

2,058 citations

Journal ArticleDOI
TL;DR: In this article, the crown ethers were used as extractants in RTIL-based liquid/liquid separations, and the resulting metal ion partitioning depends on the hydrophobicity of the crown and also on the composition of the aqueous phase (e.g., concentration of HNO3 vs Al(NO3)3).
Abstract: The crown ethers 18-crown-6 (18C6), dicyclohexano-18-crown-6 (DCH18C6), and 4,4‘-(5‘)-di-(tert-butylcyclohexano)-18-crown-6 (Dtb18C6) were dissolved in 1-alkyl-3-methylimidazolium hexafluorophosphate ([Cnmim][PF6], n = 4, 6, 8) room-temperature ionic liquids (RTILs) and studied for the extraction of Na+, Cs+, and Sr2+ from aqueous solutions. In the absence of extractant, the distribution ratios for the metal ions indicate a strong preference for the aqueous phase. With the crown ethers as extractants in RTIL-based liquid/liquid separations, the resulting metal ion partitioning depends on the hydrophobicity of the crown ether and also on the composition of the aqueous phase (e.g., concentration of HNO3 vs Al(NO3)3). Aqueous solutions of HCl, Na3 citrate, NaNO3, and HNO3 (the latter at low concentrations) decrease the metal ion distribution ratios and also decrease the water content of the RTIL phase. High concentrations of HNO3 decompose PF6- and increase both the water content and the water solubility of ...

601 citations

Journal ArticleDOI
TL;DR: Overall, the thiourea- and urea-derivatized cations yielded the highest distribution ratios, and those for Hg2+ were higher than those for Cd2+; however, a change in aqueous-phase pH does not promote the stripping of metal ions from the extracting phase.
Abstract: A series of hydrophobic task-specific ionic liquids designed to extract Hg2+ and Cd2+ from water were prepared by appending urea-, thiourea-, and thioether-substituted alkyl groups to imidazoles and combining the resulting cationic species with PF6-. The new ionic liquids were characterized and investigated for their metal ion extraction capabilities. When used in liquid/liquid extraction of Hg2+ and Cd2+ from aqueous solutions, the metal ion distribution ratios increased several orders of magnitude, regardless of whether the ionic liquids were used as the sole extracting phase or doped into a series of [1-alkyl-3-methylimidazolium][PF6] (alkyl = n-C4-C8) ionic liquids to form a 1:1 solution. In the 1:1 mixtures, as the length of the alkyl chain increased from butyl to hexyl to octyl, the metal ion distribution ratios increased. Increasing the ratio TSIL/[C4mim][PF6] resulted in higher distribution ratios for both Hg2+ and Cd2+. Overall, the thiourea- and urea-derivatized cations yielded the highest distribution ratios, and those for Hg2+ were higher than those for Cd2+; however, a change in aqueous-phase pH does not promote the stripping of metal ions from the extracting phase. The combination of these imidazolium cations and PF6- produced ionic liquids with decreased thermal stability in comparison to [C(n)mim]-[PF6]. Gaussian98 restricted Hartree-Fock geometry optimizations for one of the thiourea-appended cations shows the charge delocalization around the ring and suggests that the thiourea group may aid in deprotonating the imidazolium ring and may be responsible for the lowered thermal stability of these cations.

460 citations

Journal ArticleDOI
TL;DR: Ionic liquids (ILs) are composed of organic cations and either organic or inorganic anions that remain liquid over a wide temperature range, including room temperature.

366 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: There are indications that switching from a normal organic solvent to an ionic liquid can lead to novel and unusual chemical reactivity, which opens up a wide field for future investigations into this new class of solvents in catalytic applications.
Abstract: Ionic liquids are salts that are liquid at low temperature (<100 degrees C) which represent a new class of solvents with nonmolecular, ionic character. Even though the first representative has been known since 1914, ionic liquids have only been investigated as solvents for transition metal catalysis in the past ten years. Publications to date show that replacing an organic solvent by an ionic liquid can lead to remarkable improvements in well-known processes. Ionic liquids form biphasic systems with many organic product mixtures. This gives rise to the possibility of a multiphase reaction procedure with easy isolation and recovery of homogeneous catalysts. In addition, ionic liquids have practically no vapor pressure which facilitates product separation by distillation. There are also indications that switching from a normal organic solvent to an ionic liquid can lead to novel and unusual chemical reactivity. This opens up a wide field for future investigations into this new class of solvents in catalytic applications.

5,387 citations

Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate that cellulose can be dissolved without activation or pretreatment in, and regenerated from, 1-butyl-3-methylimidazolium chloride and other hydrophilic ionic liquids.
Abstract: We report here initial results that demonstrate that cellulose can be dissolved without activation or pretreatment in, and regenerated from, 1-butyl-3-methylimidazolium chloride and other hydrophilic ionic liquids. This may enable the application of ionic liquids as alternatives to environmentally undesirable solvents currently used for dissolution of this important bioresource.

4,276 citations

Journal ArticleDOI
TL;DR: The advent of water-soluble organometallic complexes, especially those based on sulfonated phosphorus-containing ligands, has enabled various biphasic catalytic reactions to be conducted on an industrial scale and might combine the advantages of both homogeneous and heterogeneous catalysis.
Abstract: For economical and ecological reasons, synthetic chemists are confronted with the increasing obligation of optimizing their synthetic methods. Maximizing efficiency and minimizing costs in the production of molecules and macromolecules constitutes, therefore, one of the most exciting challenges of synthetic chemistry.1-3 The ideal synthesis should produce the desired product in 100% yield and selectivity, in a safe and environmentally acceptable process.4 It is now well recognized that organometallic homogeneous catalysis offers one of the most promising approaches for solving this basic problem.2 Indeed, many of these homogeneous processes occur in high yields and selectivities and under mild reaction conditions. Most importantly, the steric and electronic properties of these catalysts can be tuned by varying the metal center and/or the ligands, thus rendering tailor-made molecular and macromolecular structures accessible.5,6 Despite the fact that various efficient methods, based on organometallic homogeneous catalysis, have been developed over the last 30 years on the laboratory scale, the industrial use of homogeneous catalytic processes is relatively limited.7 The separation of the products from the reaction mixture, the recovery of the catalysts, and the need for organic solvents are the major disadvantages in the homogeneous catalytic process. For these reasons, many homogeneous processes are not used on an industrial scale despite their benefits. Among the various approaches to address these problems, liquidliquid biphasic catalysis (“biphasic catalysis”) has emerged as one of the most important alternatives.6-11 The concept of this system implies that the molecular catalyst is soluble in only one phase whereas the substrates/products remain in the other phase. The reaction can take place in one (or both) of the phases or at the interface. In most cases, the catalyst phase can be reused and the products/substrates are simply removed from the reaction mixture by decantation. Moreover, in these biphasic systems it is possible to extract the primary products during the reaction and thus modulate the product selectivity.12 For a detailed discussion about this and other concepts of homogeneous catalyst immobilization, the reader is referred elsewhere.6,7 These biphasic systems might combine the advantages of both homogeneous (greater catalyst efficiency and mild reaction conditions) and heterogeneous (ease of catalyst recycling and separation of the products) catalysis. The advent of water-soluble organometallic complexes, especially those based on sulfonated phosphorus-containing ligands, has enabled various biphasic catalytic reactions to be conducted on an industrial scale.13-15 However, the use of water as a * Corresponding author. Fax: ++ 55 51 3316 73 04. E-mail: dupont@iq.ufrgs.br. 3667 Chem. Rev. 2002, 102, 3667−3692

3,483 citations

Journal ArticleDOI
TL;DR: A series of hydrophilic and hydrophobic 1-alkyl-3-methylimidazolium room temperature ionic liquids (RTILs) have been prepared and characterized to determine how water content, density, viscosity, surface tension, melting point, and thermal stability are affected by changes in alkyl chain length and anion.

3,469 citations