scispace - formally typeset
Search or ask a question
Author

Ann M. Lawler

Other affiliations: Johns Hopkins University
Bio: Ann M. Lawler is an academic researcher from Johns Hopkins University School of Medicine. The author has contributed to research in topics: Gene & Transgene. The author has an hindex of 22, co-authored 32 publications receiving 9137 citations. Previous affiliations of Ann M. Lawler include Johns Hopkins University.
Topics: Gene, Transgene, Gene targeting, Myostatin, Immunogen

Papers
More filters
Journal ArticleDOI
01 May 1997-Nature
TL;DR: Results suggest that GDF-8 functions specifically as a negative regulator of skeletal muscle growth, which is significantly larger than wild-type animals and show a large and widespread increase in skeletal muscle mass.
Abstract: The transforming growth factor-beta (TGF-beta) superfamily encompasses a large group of growth and differentiation factors playing important roles in regulating embryonic development and in maintaining tissue homeostasis in adult animals. Using degenerate polymerase chain reaction, we have identified a new murine TGF-beta family member, growth/differentiation factor-8 (GDF-8), which is expressed specifically in developing and adult skeletal muscle. During early stages of embryogenesis, GDF-8 expression is restricted to the myotome compartment of developing somites. At later stages and in adult animals, GDF-8 is expressed in many different muscles throughout the body. To determine the biological function of GDF-8, we disrupted the GDF-8 gene by gene targeting in mice. GDF-8 null animals are significantly larger than wild-type animals and show a large and widespread increase in skeletal muscle mass. Individual muscles of mutant animals weigh 2-3 times more than those of wild-type animals, and the increase in mass appears to result from a combination of muscle cell hyperplasia and hypertrophy. These results suggest that GDF-8 functions specifically as a negative regulator of skeletal muscle growth.

3,791 citations

Journal ArticleDOI
TL;DR: It is demonstrated that HIF-1alpha is a master regulator of cellular and developmental O2 homeostasis in Hif1a-/- embryos that manifested neural tube defects, cardiovascular malformations, and marked cell death within the cephalic mesenchyme.
Abstract: Hypoxia is an essential developmental and physiological stimulus that plays a key role in the pathophysiology of cancer, heart attack, stroke, and other major causes of mortality. Hypoxia-inducible factor 1 (HIF-1) is the only known mammalian transcription factor expressed uniquely in response to physiologically relevant levels of hypoxia. We now report that in Hif1a-/- embryonic stem cells that did not express the O2-regulated HIF-1alpha subunit, levels of mRNAs encoding glucose transporters and glycolytic enzymes were reduced, and cellular proliferation was impaired. Vascular endothelial growth factor mRNA expression was also markedly decreased in hypoxic Hif1a-/- embryonic stem cells and cystic embryoid bodies. Complete deficiency of HIF-1alpha resulted in developmental arrest and lethality by E11 of Hif1a-/- embryos that manifested neural tube defects, cardiovascular malformations, and marked cell death within the cephalic mesenchyme. In Hif1a+/+ embryos, HIF-1alpha expression increased between E8.5 and E9.5, coincident with the onset of developmental defects and cell death in Hif1a-/- embryos. These results demonstrate that HIF-1alpha is a master regulator of cellular and developmental O2 homeostasis.

2,418 citations

Journal ArticleDOI
TL;DR: A small animal model of Haemophilia A is desirable for studies of factor VIII function and gene therapy, and a mouse with severe factorVIII deficiency is made using gene targeting.
Abstract: Haemophilia A is a classic X-linked disease which affects 1 in 5-10,000 males in all populations and is caused by defects in coagulation factor VIII. Roughly 60% of patients have severe disease with factor VIII activity < 1% of normal; they have frequent spontaneous bleeding into joints, soft tissues, muscles and internal organs. These patients usually require regular injections of plasma-derived or recombinant human factor VIII. Because this is expensive and can potentially lead to life-threatening complications, other forms of therapy, including gene therapy, have been proposed. Natural canine models of factor VIII and factor IX deficiency have been available for many years, and gene therapy attempts on these dogs have met with partial success. However, a small animal model of the disease is desirable for studies of factor VIII function and gene therapy. Using gene targeting, we have made a mouse with severe factor VIII deficiency.

615 citations

Journal ArticleDOI
TL;DR: It is suggested that Gdf11 is a secreted signal that acts globally to specify positional identity along the anterior/posterior axis.
Abstract: The bones that comprise the axial skeleton have distinct morphological features characteristic of their positions along the anterior/posterior axis. We previously described a novel TGF-β family member, myostatin (encoded by the gene Mstn, formerly Gdf8), that has an essential role in regulating skeletal muscle mass1. We also identified a gene related to Mstn by low-stringency screening1. While the work described here was being completed, the cloning of this gene, designated Gdf11 (also called Bmp11), was also reported by other groups2,3. Here we show that Gdf11, a new transforming growth factor β (TGFβ) superfamily member, has an important role in establishing this skeletal pattern. During early mouse embryogenesis, Gdf11 is expressed in the primitive streak and tail bud regions, which are sites where new mesodermal cells are generated. Homozygous mutant mice carrying a targeted deletion of Gdf11 exhibit anteriorly directed homeotic transformations throughout the axial skeleton and posterior displacement of the hindlimbs. The effect of the mutation is dose dependent, as Gdf11+/– mice have a milder phenotype than Gdf11–/– mice. Mutant embryos show alterations in patterns of Hox gene expression, suggesting that Gdf11 acts upstream of the Hox genes. Our findings suggest that Gdf11 is a secreted signal that acts globally to specify positional identity along the anterior/posterior axis.

474 citations

Journal ArticleDOI
TL;DR: A 650 kilobase yeast artificial chromosome that contains the entire, unrearranged 400 kb human APP gene into mouse embryonic stem (ES) cells by lipid–mediated transfection and this transgenic strategy may prove invaluable for the development of mouse models for AD and DS.
Abstract: Overexpression of the gene encoding the β–amyloid precursor protein (APP) may have a key role in the pathogenesis of both Alzheimer's disease (AD) and Down Syndrome (DS). We have therefore introduced a 650 kilobase (kb) yeast artificial chromosome (YAC) that contains the entire, unrearranged 400 kb human APP gene into mouse embryonic stem (ES) cells by lipid–mediated transfection. ES lines were generated that contain a stably integrated, unrearranged human APP gene. Moreover, we demonstrate germ line transmission of the APP YAC in transgenic mice and expression of human APP mRNA and protein at levels comparable to endogenous APP. This transgenic strategy may prove invaluable for the development of mouse models for AD and DS.

343 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The transforming growth factor beta (TGF-beta) family of growth factors control the development and homeostasis of most tissues in metazoan organisms and mutations in these pathways are the cause of various forms of human cancer and developmental disorders.
Abstract: The transforming growth factor beta (TGF-beta) family of growth factors control the development and homeostasis of most tissues in metazoan organisms. Work over the past few years has led to the elucidation of a TGF-beta signal transduction network. This network involves receptor serine/threonine kinases at the cell surface and their substrates, the SMAD proteins, which move into the nucleus, where they activate target gene transcription in association with DNA-binding partners. Distinct repertoires of receptors, SMAD proteins, and DNA-binding partners seemingly underlie, in a cell-specific manner, the multifunctional nature of TGF-beta and related factors. Mutations in these pathways are the cause of various forms of human cancer and developmental disorders.

7,710 citations

Journal ArticleDOI
TL;DR: Hypoxia-inducible factor 1 (HIF-1) activates the transcription of genes that are involved in crucial aspects of cancer biology, including angiogenesis, cell survival, glucose metabolism and invasion.
Abstract: Hypoxia-inducible factor 1 (HIF-1) activates the transcription of genes that are involved in crucial aspects of cancer biology, including angiogenesis, cell survival, glucose metabolism and invasion. Intratumoral hypoxia and genetic alterations can lead to HIF-1alpha overexpression, which has been associated with increased patient mortality in several cancer types. In preclinical studies, inhibition of HIF-1 activity has marked effects on tumour growth. Efforts are underway to identify inhibitors of HIF-1 and to test their efficacy as anticancer therapeutics.

6,024 citations

Journal ArticleDOI
TL;DR: A hypoxia-induced metabolic switch that shunts glucose metabolites from the mitochondria to glycolysis to maintain ATP production and to prevent toxic ROS production is revealed.

3,193 citations

Journal ArticleDOI
09 Feb 1995-Nature
TL;DR: Transgenic mice that express high levels of human mutant APP support a primary role for APP/Aβ in the genesis of AD and could provide a preclinical model for testing therapeutic drugs.
Abstract: Alzheimer's disease (AD) is the most common cause of progressive intellectual failure in aged humans. AD brains contain numerous amyloid plaques surrounded by dystrophic neurites, and show profound synaptic loss, neurofibrillary tangle formation and gliosis. The amyloid plaques are composed of amyloid beta-peptide (A beta), a 40-42-amino-acid fragment of the beta-amyloid precursor protein (APP). A primary pathogenic role for APP/A beta is suggested by missense mutations in APP that are tightly linked to autosomal dominant forms of AD. A major obstacle to elucidating and treating AD has been the lack of an animal model. Animals transgenic for APP have previously failed to show extensive AD-type neuropathology, but we now report the production of transgenic mice that express high levels of human mutant APP (with valine at residue 717 substituted by phenylalanine) and which progressively develop many of the pathological hallmarks of AD, including numerous extracellular thioflavin S-positive A beta deposits, neuritic plaques, synaptic loss, astrocytosis and microgliosis. These mice support a primary role for APP/A beta in the genesis of AD and could provide a preclinical model for testing therapeutic drugs.

2,669 citations

Journal ArticleDOI
TL;DR: HIF plays a central role in the transcriptional response to changes in oxygen availability and is modulated by FIH1-mediated asparagine hydroxylation, and HIF-modulatory drugs are now being developed for diverse diseases.

2,623 citations