scispace - formally typeset
Search or ask a question
Author

Ann M. Peiffer

Bio: Ann M. Peiffer is an academic researcher from Wake Forest University. The author has contributed to research in topics: Stimulus modality & Dose-volume histogram. The author has an hindex of 27, co-authored 62 publications receiving 2619 citations. Previous affiliations of Ann M. Peiffer include University of Texas MD Anderson Cancer Center & Mars Hill University.


Papers
More filters
Journal ArticleDOI
TL;DR: There is a critical need to investigate the microanatomic and functional effects of radiation in various brain regions as well as their integration at clinically relevant doses and schedules.
Abstract: Approximately 100,000 primary and metastatic brain tumor patients/year in the US survive long enough (>6 months) to experience radiation-induced brain injury. Prior to 1970, the human brain was thought to be highly radioresistant; the acute CNS syndrome occurs after single doses >30 Gy; white matter necrosis occurs at fractionated doses >60 Gy. Although white matter necrosis is uncommon with modern techniques, functional deficits, including progressive impairments in memory, attention, and executive function have become important, because they have profound effects on quality of life. Preclinical studies have provided valuable insights into the pathogenesis of radiation-induced cognitive impairment. Given its central role in memory and neurogenesis, the majority of these studies have focused on the hippocampus. Irradiating pediatric and young adult rodent brains leads to several hippocampal changes including neuroinflammation and a marked reduction in neurogenesis. These data have been interpreted to suggest that shielding the hippocampus will prevent clinical radiation-induced cognitive impairment. However, this interpretation may be overly simplistic. Studies using older rodents, that more closely match the adult human brain tumor population, indicate that, unlike pediatric and young adult rats, older rats fail to show a radiation-induced decrease in neurogenesis or a loss of mature neurons. Nevertheless, older rats still exhibit cognitive impairment. This occurs in the absence of demyelination and/or white matter necrosis similar to what is observed clinically, suggesting that more subtle molecular, cellular and/or microanatomic modifications are involved in this radiation-induced brain injury. Given that radiation-induced cognitive impairment likely reflects damage to both hippocampal- and non-hippocampal-dependent domains, there is a critical need to investigate the microanatomic and functional effects of radiation in various brain regions as well as their integration at clinically relevant doses and schedules. Recently developed techniques in neuroscience and neuroimaging provide not only an opportunity to accomplish this, but they also offer the opportunity to identify new biomarkers and new targets for interventions to prevent or ameliorate these late effects.

509 citations

Journal ArticleDOI
TL;DR: Treatment with donepezil did not significantly improve the overall composite score, but it did result in modest improvements in several cognitive functions, especially among patients with greater pretreatment impairments.
Abstract: Purpose Neurotoxic effects of brain irradiation include cognitive impairment in 50% to 90% of patients. Prior studies have suggested that donepezil, a neurotransmitter modulator, may improve cognitive function. Patients and Methods A total of 198 adult brain tumor survivors ≥ 6 months after partial- or whole-brain irradiation were randomly assigned to receive a single daily dose (5 mg for 6 weeks, 10 mg for 18 weeks) of donepezil or placebo. A cognitive test battery assessing memory, attention, language, visuomotor, verbal fluency, and executive functions was administered before random assignment and at 12 and 24 weeks. A cognitive composite score (primary outcome) and individual cognitive domains were evaluated. Results Of this mostly middle-age, married, non-Hispanic white sample, 66% had primary brain tumors, 27% had brain metastases, and 8% underwent prophylactic cranial irradiation. After 24 weeks of treatment, the composite scores did not differ significantly between groups (P = .48); however, signi...

191 citations

Journal ArticleDOI
TL;DR: Data support the conclusion that differences in multisensory processing for older adults cannot be explained solely by the effects of general cognitive slowing, and suggest enhanced integration may be explained by alterations associated with general Cognitive slowing.
Abstract: Older adults are known to gain more than younger adults from the simultaneous presentation of semantically congruent sensory stimuli. Although these findings are quite exciting, they may not solely be due to age-related differences in multisensory processing. Rather, enhanced integration may be explained by alterations associated with general cognitive slowing. This study utilized a task that eliminated most high-order cognitive processing. As such, no significant differences in unisensory response times were seen; however, older adults actually showed faster multisensory responses than younger adults. Older adults continued to show significantly greater multisensory enhancement than younger adults. Data support the conclusion that differences in multisensory processing for older adults cannot be explained solely by the effects of general cognitive slowing.

171 citations

Journal ArticleDOI
TL;DR: The results suggest a limited ability of the cerebrovascular adenosine system to compensate for high amounts of daily caffeine use, which is similar to that suggested in Hum Brain Mapp 2009.
Abstract: Caffeine is a commonly used neurostimulant that also produces cerebral vasoconstriction by antagonizing adenosine receptors. Chronic caffeine use results in an adaptation of the vascular adenosine receptor system presumably to compensate for the vasoconstrictive effects of caffeine. We investigated the effects of caffeine on cerebral blood flow (CBF) in increasing levels of chronic caffeine use. Low (mean = 45 mg/day), moderate (mean = 405 mg/day), and high (mean = 950 mg/day) caffeine users underwent quantitative perfusion magnetic resonance imaging on four separate occasions: twice in a caffeine abstinent state (abstained state) and twice in a caffeinated state following their normal caffeine use (native state). In each state, there were two drug conditions: participants received either caffeine (250 mg) or placebo. Gray matter CBF was tested with repeated-measures analysis of variance using caffeine use as a between-subjects factor, and correlational analyses were conducted between CBF and caffeine use. Caffeine reduced CBF by an average of 27% across both caffeine states. In the abstained placebo condition, moderate and high users had similarly greater CBF than low users; but in the native placebo condition, the high users had a trend towards less CBF than the low and moderate users. Our results suggest a limited ability of the cerebrovascular adenosine system to compensate for high amounts of daily caffeine use.

152 citations

Journal ArticleDOI
TL;DR: The ability to detect early white matter alterations may facilitate development of targeted treatments that prevent or slow age-related white matter degradation and associated cognitive sequelae.
Abstract: Age-related alterations in white matter have the potential to profoundly affect cognitive functioning. In fact, magnetic resonance imaging (MRI) studies using fractional anisotropy (FA) to measure white matter integrity reveal a positive correlation between FA and behavioral performance in older adults. Confounding these results are imaging studies demonstrating age-related white matter atrophy in some areas displaying altered FA, suggesting changes in diffusion may be simply an epiphenomenon of tissue loss. In the current study, structural MRI techniques were used to identify the relationship between white matter integrity and decreased volume in healthy aging adults. The data demonstrated that white matter atrophy did in fact account for differences in some areas, but significant FA decreases remained across much of the white matter after adjusting for atrophy. Results suggest a complex relationship between changes in white matter integrity and volume. FA appears to be more sensitive than volume loss to changes in normal appearing tissue, and these FA changes may actually precede white matter atrophy in some brain areas. As such, the ability to detect early white matter alterations may facilitate development of targeted treatments that prevent or slow age-related white matter degradation and associated cognitive sequelae.

151 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

01 Jan 2015
TL;DR: The abstract should follow the structure of the article (relevance, degree of exploration of the problem, the goal, the main results, conclusion) and characterize the theoretical and practical significance of the study results.
Abstract: Summary) The abstract should follow the structure of the article (relevance, degree of exploration of the problem, the goal, the main results, conclusion) and characterize the theoretical and practical significance of the study results. The abstract should not contain wording echoing the title, cumbersome grammatical structures and abbreviations. The text should be written in scientific style. The volume of abstracts (summaries) depends on the content of the article, but should not be less than 250 words. All abbreviations must be disclosed in the summary (in spite of the fact that they will be disclosed in the main text of the article), references to the numbers of publications from reference list should not be made. The sentences of the abstract should constitute an integral text, which can be made by use of the words “consequently”, “for example”, “as a result”. Avoid the use of unnecessary introductory phrases (eg, “the author of the article considers...”, “The article presents...” and so on.)

1,229 citations

Journal ArticleDOI
26 Jul 2016-JAMA
TL;DR: Among patients with 1 to 3 brain metastases, the use of SRS alone, compared with SRS combined with WBRT, resulted in less cognitive deterioration at 3 months, and in the absence of a difference in overall survival, these findings suggest that.
Abstract: Importance Whole brain radiotherapy (WBRT) significantly improves tumor control in the brain after stereotactic radiosurgery (SRS), yet because of its association with cognitive decline, its role in the treatment of patients with brain metastases remains controversial. Objective To determine whether there is less cognitive deterioration at 3 months after SRS alone vs SRS plus WBRT. Design, Setting, and Participants At 34 institutions in North America, patients with 1 to 3 brain metastases were randomized to receive SRS or SRS plus WBRT between February 2002 and December 2013. Interventions The WBRT dose schedule was 30 Gy in 12 fractions; the SRS dose was 18 to 22 Gy in the SRS plus WBRT group and 20 to 24 Gy for SRS alone. Main Outcomes and Measures The primary end point was cognitive deterioration (decline >1 SD from baseline on at least 1 cognitive test at 3 months) in participants who completed the baseline and 3-month assessments. Secondary end points included time to intracranial failure, quality of life, functional independence, long-term cognitive status, and overall survival. Results There were 213 randomized participants (SRS alone, n = 111; SRS plus WBRT, n = 102) with a mean age of 60.6 years (SD, 10.5 years); 103 (48%) were women. There was less cognitive deterioration at 3 months after SRS alone (40/63 patients [63.5%]) than when combined with WBRT (44/48 patients [91.7%]; difference, −28.2%; 90% CI, −41.9% to −14.4%; P P = .002). Time to intracranial failure was significantly shorter for SRS alone compared with SRS plus WBRT (hazard ratio, 3.6; 95% CI, 2.2-5.9; P P = .26). Median overall survival was 10.4 months for SRS alone and 7.4 months for SRS plus WBRT (hazard ratio, 1.02; 95% CI, 0.75-1.38; P = .92). For long-term survivors, the incidence of cognitive deterioration was less after SRS alone at 3 months (5/11 [45.5%] vs 16/17 [94.1%]; difference, −48.7%; 95% CI, −87.6% to −9.7%; P = .007) and at 12 months (6/10 [60%] vs 17/18 [94.4%]; difference, −34.4%; 95% CI, −74.4% to 5.5%; P = .04). Conclusions and Relevance Among patients with 1 to 3 brain metastases, the use of SRS alone, compared with SRS combined with WBRT, resulted in less cognitive deterioration at 3 months. In the absence of a difference in overall survival, these findings suggest that for patients with 1 to 3 brain metastases amenable to radiosurgery, SRS alone may be a preferred strategy. Trial Registration clinicaltrials.gov Identifier:NCT00377156

1,129 citations

Journal ArticleDOI
TL;DR: The main conclusions are that (1) the brain shrinks in volume and the ventricular system expands in healthy aging, and (2) reductions in specific cognitive abilities--for instance processing speed, executive functions, and episodic memory--are seen inhealthy aging.
Abstract: The structure of the brain is constantly changing from birth throughout the lifetime, meaning that normal aging, free from dementia, is associated with structural brain changes. This paper reviews recent evidence from magnetic resonance imaging (MRI) studies about age-related changes in the brain. The main conclusions are that (1) the brain shrinks in volume and the ventricular system expands in healthy aging. However, the pattern of changes is highly heterogeneous, with the largest changes seen in the frontal and temporal cortex, and in the putamen, thalamus, and accumbens. With modern approaches to analysis of MRI data, changes in cortical thickness and subcortical volume can be tracked over periods as short as one year, with annual reductions of between 0.5% and 1.0% in most brain areas. (2) The volumetric brain reductions in healthy aging are likely only to a minor extent related to neuronal loss. Rather, shrinkage of neurons, reductions of synaptic spines, and lower numbers of synapses probably account for the reductions in grey matter. In addition, the length of myelinated axons is greatly reduced, up to almost 50%. (3) Reductions in specific cognitive abilities--for instance processing speed, executive functions, and episodic memory--are seen in healthy aging. Such reductions are to a substantial degree mediated by neuroanatomical changes, meaning that between 25% and 100% of the differences between young and old participants in selected cognitive functions can be explained by group differences in structural brain characteristics.

752 citations

Journal ArticleDOI
TL;DR: Although the volumetric data supported protracted growth into the sixth decade, DTI indices plateaued early in the fourth decade and then declined slowly into late adulthood followed by an accelerating decrease in senescence, providing insufficient evidence in support of a simple last-in-first-out hypothesis of life-span changes.
Abstract: Magnetic resonance imaging volumetry studies report inverted Upatterns with increasing white-matter (WM) volume into middle age suggesting protracted WM maturation compared with the cortical gray matter. Diffusion tensor imaging (DTI) is sensitive to degree and direction of water permeability in biological tissues, providing in vivo indices of WM microstructure. The aim of this cross-sectional study was to delineate age trajectories of WM volume and DTI indices in 430 healthy subjects ranging 8--85 years of age. We used automated regional brain volume segmentation and tract-based statistics of fractional anisotropy, mean, and radial diffusivity as markers of WM integrity. Nonparametric regressions were used to fit the age trajectories and to estimate the timing of maximum development and deterioration in aging. Although the volumetric data supported protracted growth into the sixth decade, DTI indices plateaued early in the fourth decade across all tested regions and then declined slowly into late adulthood followed by an accelerating decrease in senescence. Tractwise and voxel-based analyses yielded regional differences in development and aging but did not provide ample evidence in support of a simple last-in-firstout hypothesis of life-span changes.

699 citations