scispace - formally typeset
Search or ask a question
Author

Anna A. Gorbushina

Bio: Anna A. Gorbushina is an academic researcher from Bundesanstalt für Materialforschung und -prüfung. The author has contributed to research in topics: Weathering & Shrubland. The author has an hindex of 27, co-authored 63 publications receiving 2467 citations. Previous affiliations of Anna A. Gorbushina include University of Geneva & Free University of Berlin.


Papers
More filters
Journal ArticleDOI
TL;DR: Subaerial biofilm metabolic activity centres on retention of water, protecting the cells from fluctuating environmental conditions and solar radiation as well as prolonging their vegetative life, which manifests itself as bio-weathering of rock surfaces.
Abstract: Biofilms are interface micro-habitats formed by microbes that differ markedly from those of the ambient environment. The term 'subaerial biofilm' (SAB) was coined for microbial communities that develop on solid mineral surfaces exposed to the atmosphere. Subaerial biofilms are ubiquitous, self-sufficient, miniature microbial ecosystems that are found on buildings, bare rocks in deserts, mountains, and at all latitudes where direct contact with the atmosphere and solar radiation occurs. Subaerial biofilms on exposed terrestrial surfaces are characterized by patchy growth that is dominated by associations of fungi, algae, cyanobacteria and heterotrophic bacteria. Inherent subaerial settlers include specialized actinobacteria (e.g. Geodermatophilus), cyanobacteria and microcolonial fungi. Individuals within SAB communities avoid sexual reproduction, but cooperate extensively with one another especially to avoid loss of energy and nutrients. Subaerial biofilm metabolic activity centres on retention of water, protecting the cells from fluctuating environmental conditions and solar radiation as well as prolonging their vegetative life. Atmospheric aerosols, gases and propagatory particles serve as sources of nutrients and inoculum for these open communities. Subaerial biofilms induce chemical and physical changes to rock materials, and they penetrate the mineral substrate contributing to rock and mineral decay, which manifests itself as bio-weathering of rock surfaces. Given their characteristic slow and sensitive growth, SAB may also serve as bioindicators of atmospheric and/or climate change.

520 citations

Journal ArticleDOI
TL;DR: Life at the atmosphere-lithosphere boundary is an ancient terrestrial niche that is sparsely covered by thin subaerial biofilms that adapted to desiccation, solar radiation, and other environmental challenges by developing protective, melanized cell walls, assuming microcolonial architectures and symbiotic lifestyles.
Abstract: Life at the atmosphere-lithosphere boundary is an ancient terrestrial niche that is sparsely covered by thin subaerial biofilms. The microbial inhabitants of these biofilms (a) have adapted to all types of terrestrial/subaerial stresses (e.g., desiccation, extreme temperatures, low nutrient availability, intense solar radiation), (b) interact with minerals that serve as both a dwelling and a source of mineral nutrients, and (c) provoke weathering of rocks and soil formation. Subaerial communities comprise heterotrophic and phototrophic microorganisms that support each other's lifestyle. Major lineages of eubacteria associated with the early colonization of land (e.g., Actinobacteria, Cyanobacteria) are present in these habitats along with eukaryotes such as microscopic green algae and ascomycetous fungi. The subaerial biofilm inhabitants have adapted to desiccation, solar radiation, and other environmental challenges by developing protective, melanized cell walls, assuming microcolonial architectures and symbiotic lifestyles. How these changes occurred, their significance in soil formation, and their potential as markers of climate change are discussed below.

191 citations

Journal ArticleDOI
TL;DR: It is hypothesize that H. werneckii melanization is effective in reducing the permeability of its cell wall to its major compatible solute glycerol, which might be one of the features that helps it tolerate a wider range of salt concentrations than most organisms.
Abstract: This study was intended to determine the osmoadaptation strategy of Hortaea werneckii, an extremely salt-tolerant melanized ascomycetous fungus that can grow at 0–5.1 M NaCl. It has been shown previously that glycerol is the major compatible solute in actively growing H. werneckii. This study showed that the exponentially growing cells also contained erythritol, arabitol and mannitol at optimal growth salinities, but only glycerol and erythritol at maximal salinities. The latter two were both demonstrated to be major compatible solutes in H. werneckii, as their decrease correlated with the severity of hypoosmotic shock. Besides higher amounts of erythritol and lower amounts of glycerol, stationary-phase cells also contained mycosporine-glutaminol-glucoside, which might act as a complementary compatible solute. H. werneckii is constitutively melanized under various salinity conditions. Ultrastructural study showed localization of melanin in the outer parts of the cell wall as a distinct layer at optimal salinity (0.86 M NaCl), whereas cell-wall melanization diminished at higher salinities. The role of melanized cell wall in the effective retention of glycerol is already known, and was also demonstrated in H. werneckii by lower retention of glycerol in cells with blocked melanization compared to melanized cells. However, these non-melanized cells compensated for the lower amounts of glycerol with higher amounts of erythritol and arabitol. We hypothesize that H. werneckii melanization is effective in reducing the permeability of its cell wall to its major compatible solute glycerol, which might be one of the features that helps it tolerate a wider range of salt concentrations than most organisms.

159 citations

Journal ArticleDOI
01 Feb 2003-Botany
TL;DR: Mycosporines present in the vegetative fungal microcolonies may be associated with the high survival potential, nonexpansive intracolonial growth, and longevity of these fungi.
Abstract: Microcolonial fungi, long-living modified mycelia frequently occurring on desert and pseudodesert rock surfaces, are exposed to strong ultraviolet (UV) radiation, desiccation, and nutrient scarcity...

98 citations

Journal ArticleDOI
TL;DR: Geochemical analyses of this resource indicated that dust collected over the Atlantic in 1838 originated from the Western Sahara, while molecular-microbiological methods demonstrated the presence of many viable microbes.
Abstract: Summary Charles Darwin, like others before him, collected aeolian dust over the Atlantic Ocean and sent it to Christian Gottfried Ehrenberg in Berlin. Ehrenberg’s collection is now housed in the Museum of Natural History and contains specimens that were gathered at the onset of the Industrial Revolution. Geochemical analyses of this resource indicated that dust collected over the Atlantic in 1838 originated from the Western Sahara, while molecular-microbiological methods demonstrated the presence of many viable microbes. Older samples sent to Ehrenberg from Barbados almost two centuries ago also contained numbers of cultivable bacteria and fungi. Many diverse ascomycetes, and eubacteria were found. Scanning electron microscopy and cultivation suggested that Bacillus megaterium, a common soil bacterium, was attached to historic sand grains, and it was inoculated onto dry sand along with a non-sporeforming control, the Gram-negative soil bacterium Rhizobium sp. NGR234. On sand B. megaterium quickly developed spores, which survived for extended periods and even though the numbers of NGR234 steadily declined, they were still considerable after months of incubation. Thus, microbes that

94 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The fundamental role of the biofilm matrix is considered, describing how the characteristic features of biofilms — such as social cooperation, resource capture and enhanced survival of exposure to antimicrobials — all rely on the structural and functional properties of the matrix.
Abstract: Bacterial biofilms are formed by communities that are embedded in a self-produced matrix of extracellular polymeric substances (EPS). Importantly, bacteria in biofilms exhibit a set of 'emergent properties' that differ substantially from free-living bacterial cells. In this Review, we consider the fundamental role of the biofilm matrix in establishing the emergent properties of biofilms, describing how the characteristic features of biofilms - such as social cooperation, resource capture and enhanced survival of exposure to antimicrobials - all rely on the structural and functional properties of the matrix. Finally, we highlight the value of an ecological perspective in the study of the emergent properties of biofilms, which enables an appreciation of the ecological success of biofilms as habitat formers and, more generally, as a bacterial lifestyle.

3,277 citations

Journal ArticleDOI
TL;DR: The ubiquity and importance of microbes in biosphere processes make geomicrobiology one of the most important concepts within microbiology, and one requiring an interdisciplinary approach to define environmental and applied significance and underpin exploitation in biotechnology.
Abstract: Microbes play key geoactive roles in the biosphere, particularly in the areas of element biotransformations and biogeochemical cycling, metal and mineral transformations, decomposition, bioweathering, and soil and sediment formation. All kinds of microbes, including prokaryotes and eukaryotes and their symbiotic associations with each other and 'higher organisms', can contribute actively to geological phenomena, and central to many such geomicrobial processes are transformations of metals and minerals. Microbes have a variety of properties that can effect changes in metal speciation, toxicity and mobility, as well as mineral formation or mineral dissolution or deterioration. Such mechanisms are important components of natural biogeochemical cycles for metals as well as associated elements in biomass, soil, rocks and minerals, e.g. sulfur and phosphorus, and metalloids, actinides and metal radionuclides. Apart from being important in natural biosphere processes, metal and mineral transformations can have beneficial or detrimental consequences in a human context. Bioremediation is the application of biological systems to the clean-up of organic and inorganic pollution, with bacteria and fungi being the most important organisms for reclamation, immobilization or detoxification of metallic and radionuclide pollutants. Some biominerals or metallic elements deposited by microbes have catalytic and other properties in nanoparticle, crystalline or colloidal forms, and these are relevant to the development of novel biomaterials for technological and antimicrobial purposes. On the negative side, metal and mineral transformations by microbes may result in spoilage and destruction of natural and synthetic materials, rock and mineral-based building materials (e.g. concrete), acid mine drainage and associated metal pollution, biocorrosion of metals, alloys and related substances, and adverse effects on radionuclide speciation, mobility and containment, all with immense social and economic consequences. The ubiquity and importance of microbes in biosphere processes make geomicrobiology one of the most important concepts within microbiology, and one requiring an interdisciplinary approach to define environmental and applied significance and underpin exploitation in biotechnology.

1,550 citations

10 Dec 2007
TL;DR: The experiments on both rice and human genome sequences demonstrate that EVM produces automated gene structure annotation approaching the quality of manual curation.
Abstract: EVidenceModeler (EVM) is presented as an automated eukaryotic gene structure annotation tool that reports eukaryotic gene structures as a weighted consensus of all available evidence. EVM, when combined with the Program to Assemble Spliced Alignments (PASA), yields a comprehensive, configurable annotation system that predicts protein-coding genes and alternatively spliced isoforms. Our experiments on both rice and human genome sequences demonstrate that EVM produces automated gene structure annotation approaching the quality of manual curation.

1,528 citations

Journal ArticleDOI
TL;DR: This article seeks to emphasize the fundamental importance of fungi in several key areas including organic and inorganic transformations and element cycling, rock and mineral transformations, bioweathering, mycogenic mineral formation, fungal-clay interactions, metal-fungal interactions, and the significance of such processes in the environment and their relevance to areas of environmental biotechnology such as bioremediation.

994 citations

Journal ArticleDOI
TL;DR: The potential involvement of quorum sensing and Type III secretion systems is discussed, even if the exact nature of the complex interspecies/interphylum interactions remains unclear.
Abstract: This review focuses on interactions among plants, mycorrhizal fungi, and bacteria, testing the hypothesis whether mycorrhizas can be defined as tripartite associations. After summarizing the main biological features of mycorrhizas, we illustrate the different types of interaction occurring between mycorrhizal fungi and bacteria, from loosely associated microbes to endobacteria. We then discuss, in the context of nutritional strategies, the mechanisms that operate among members of the consortium and that often promote plant growth. Release of active molecules, including volatiles, and physical contact among the partners seem important for the establishment of the bacteria/mycorrhizal fungus/plant network. The potential involvement of quorum sensing and Type III secretion systems is discussed, even if the exact nature of the complex interspecies/interphylum interactions remains unclear.

661 citations