scispace - formally typeset
Search or ask a question
Author

Anna Bosch

Bio: Anna Bosch is an academic researcher from University of Girona. The author has contributed to research in topics: Contextual image classification & Probabilistic latent semantic analysis. The author has an hindex of 12, co-authored 20 publications receiving 4934 citations.

Papers
More filters
Proceedings ArticleDOI
09 Jul 2007
TL;DR: This work introduces a descriptor that represents local image shape and its spatial layout, together with a spatial pyramid kernel that is designed so that the shape correspondence between two images can be measured by the distance between their descriptors using the kernel.
Abstract: The objective of this paper is classifying images by the object categories they contain, for example motorbikes or dolphins. There are three areas of novelty. First, we introduce a descriptor that represents local image shape and its spatial layout, together with a spatial pyramid kernel. These are designed so that the shape correspondence between two images can be measured by the distance between their descriptors using the kernel. Second, we generalize the spatial pyramid kernel, and learn its level weighting parameters (on a validation set). This significantly improves classification performance. Third, we show that shape and appearance kernels may be combined (again by learning parameters on a validation set).Results are reported for classification on Caltech-101 and retrieval on the TRECVID 2006 data sets. For Caltech-101 it is shown that the class specific optimization that we introduce exceeds the state of the art performance by more than 10%.

1,496 citations

Proceedings ArticleDOI
26 Dec 2007
TL;DR: It is shown that selecting the ROI adds about 5% to the performance and, together with the other improvements, the result is about a 10% improvement over the state of the art for Caltech-256.
Abstract: We explore the problem of classifying images by the object categories they contain in the case of a large number of object categories. To this end we combine three ingredients: (i) shape and appearance representations that support spatial pyramid matching over a region of interest. This generalizes the representation of Lazebnik et al., (2006) from an image to a region of interest (ROI), and from appearance (visual words) alone to appearance and local shape (edge distributions); (ii) automatic selection of the regions of interest in training. This provides a method of inhibiting background clutter and adding invariance to the object instance 's position; and (iii) the use of random forests (and random ferns) as a multi-way classifier. The advantage of such classifiers (over multi-way SVM for example) is the ease of training and testing. Results are reported for classification of the Caltech-101 and Caltech-256 data sets. We compare the performance of the random forest/ferns classifier with a benchmark multi-way SVM classifier. It is shown that selecting the ROI adds about 5% to the performance and, together with the other improvements, the result is about a 10% improvement over the state of the art for Caltech-256.

1,401 citations

Book ChapterDOI
07 May 2006
TL;DR: The classification performance under changes in the visual vocabulary and number of latent topics learnt is investigated, and a novel vocabulary using colour SIFT descriptors is developed using probabilistic Latent Semantic Analysis.
Abstract: Given a set of images of scenes containing multiple object categories (e.g. grass, roads, buildings) our objective is to discover these objects in each image in an unsupervised manner, and to use this object distribution to perform scene classification. We achieve this discovery using probabilistic Latent Semantic Analysis (pLSA), a generative model from the statistical text literature, here applied to a bag of visual words representation for each image. The scene classification on the object distribution is carried out by a k-nearest neighbour classifier. We investigate the classification performance under changes in the visual vocabulary and number of latent topics learnt, and develop a novel vocabulary using colour SIFT descriptors. Classification performance is compared to the supervised approaches of Vogel & Schiele [19] and Oliva & Torralba [11], and the semi-supervised approach of Fei Fei & Perona [3] using their own datasets and testing protocols. In all cases the combination of (unsupervised) pLSA followed by (supervised) nearest neighbour classification achieves superior results. We show applications of this method to image retrieval with relevance feedback and to scene classification in videos.

846 citations

Journal ArticleDOI
TL;DR: This work introduces a novel vocabulary using dense color SIFT descriptors and investigates the classification performance under changes in the size of the visual vocabulary, the number of latent topics learned, and the type of discriminative classifier used (k-nearest neighbor or SVM).
Abstract: We investigate whether dimensionality reduction using a latent generative model is beneficial for the task of weakly supervised scene classification. In detail, we are given a set of labeled images of scenes (for example, coast, forest, city, river, etc.), and our objective is to classify a new image into one of these categories. Our approach consists of first discovering latent ";topics"; using probabilistic Latent Semantic Analysis (pLSA), a generative model from the statistical text literature here applied to a bag of visual words representation for each image, and subsequently, training a multiway classifier on the topic distribution vector for each image. We compare this approach to that of representing each image by a bag of visual words vector directly and training a multiway classifier on these vectors. To this end, we introduce a novel vocabulary using dense color SIFT descriptors and then investigate the classification performance under changes in the size of the visual vocabulary, the number of latent topics learned, and the type of discriminative classifier used (k-nearest neighbor or SVM). We achieve superior classification performance to recent publications that have used a bag of visual word representation, in all cases, using the authors' own data sets and testing protocols. We also investigate the gain in adding spatial information. We show applications to image retrieval with relevance feedback and to scene classification in videos.

778 citations

Journal ArticleDOI
TL;DR: A detailed review of some of the most commonly used scene classification approaches, giving the advantages and disadvantages of each methodology.

269 citations


Cited by
More filters
Proceedings ArticleDOI
23 Jun 2008
TL;DR: A new method for video classification that builds upon and extends several recent ideas including local space-time features,space-time pyramids and multi-channel non-linear SVMs is presented and shown to improve state-of-the-art results on the standard KTH action dataset.
Abstract: The aim of this paper is to address recognition of natural human actions in diverse and realistic video settings. This challenging but important subject has mostly been ignored in the past due to several problems one of which is the lack of realistic and annotated video datasets. Our first contribution is to address this limitation and to investigate the use of movie scripts for automatic annotation of human actions in videos. We evaluate alternative methods for action retrieval from scripts and show benefits of a text-based classifier. Using the retrieved action samples for visual learning, we next turn to the problem of action classification in video. We present a new method for video classification that builds upon and extends several recent ideas including local space-time features, space-time pyramids and multi-channel non-linear SVMs. The method is shown to improve state-of-the-art results on the standard KTH action dataset by achieving 91.8% accuracy. Given the inherent problem of noisy labels in automatic annotation, we particularly investigate and show high tolerance of our method to annotation errors in the training set. We finally apply the method to learning and classifying challenging action classes in movies and show promising results.

3,833 citations

Proceedings ArticleDOI
25 Oct 2010
TL;DR: VLFeat is an open and portable library of computer vision algorithms that includes rigorous implementations of common building blocks such as feature detectors, feature extractors, (hierarchical) k-means clustering, randomized kd-tree matching, and super-pixelization.
Abstract: VLFeat is an open and portable library of computer vision algorithms. It aims at facilitating fast prototyping and reproducible research for computer vision scientists and students. It includes rigorous implementations of common building blocks such as feature detectors, feature extractors, (hierarchical) k-means clustering, randomized kd-tree matching, and super-pixelization. The source code and interfaces are fully documented. The library integrates directly with MATLAB, a popular language for computer vision research.

3,417 citations

Proceedings ArticleDOI
13 Jun 2010
TL;DR: This paper presents a simple but effective coding scheme called Locality-constrained Linear Coding (LLC) in place of the VQ coding in traditional SPM, using the locality constraints to project each descriptor into its local-coordinate system, and the projected coordinates are integrated by max pooling to generate the final representation.
Abstract: The traditional SPM approach based on bag-of-features (BoF) requires nonlinear classifiers to achieve good image classification performance. This paper presents a simple but effective coding scheme called Locality-constrained Linear Coding (LLC) in place of the VQ coding in traditional SPM. LLC utilizes the locality constraints to project each descriptor into its local-coordinate system, and the projected coordinates are integrated by max pooling to generate the final representation. With linear classifier, the proposed approach performs remarkably better than the traditional nonlinear SPM, achieving state-of-the-art performance on several benchmarks. Compared with the sparse coding strategy [22], the objective function used by LLC has an analytical solution. In addition, the paper proposes a fast approximated LLC method by first performing a K-nearest-neighbor search and then solving a constrained least square fitting problem, bearing computational complexity of O(M + K2). Hence even with very large codebooks, our system can still process multiple frames per second. This efficiency significantly adds to the practical values of LLC for real applications.

3,307 citations

Proceedings ArticleDOI
20 Jun 2009
TL;DR: An extension of the SPM method is developed, by generalizing vector quantization to sparse coding followed by multi-scale spatial max pooling, and a linear SPM kernel based on SIFT sparse codes is proposed, leading to state-of-the-art performance on several benchmarks by using a single type of descriptors.
Abstract: Recently SVMs using spatial pyramid matching (SPM) kernel have been highly successful in image classification. Despite its popularity, these nonlinear SVMs have a complexity O(n2 ~ n3) in training and O(n) in testing, where n is the training size, implying that it is nontrivial to scaleup the algorithms to handle more than thousands of training images. In this paper we develop an extension of the SPM method, by generalizing vector quantization to sparse coding followed by multi-scale spatial max pooling, and propose a linear SPM kernel based on SIFT sparse codes. This new approach remarkably reduces the complexity of SVMs to O(n) in training and a constant in testing. In a number of image categorization experiments, we find that, in terms of classification accuracy, the suggested linear SPM based on sparse coding of SIFT descriptors always significantly outperforms the linear SPM kernel on histograms, and is even better than the nonlinear SPM kernels, leading to state-of-the-art performance on several benchmarks by using a single type of descriptors.

3,017 citations

Book ChapterDOI
05 Sep 2010
TL;DR: This paper introduces a method that adapts object models acquired in a particular visual domain to new imaging conditions by learning a transformation that minimizes the effect of domain-induced changes in the feature distribution.
Abstract: Domain adaptation is an important emerging topic in computer vision. In this paper, we present one of the first studies of domain shift in the context of object recognition. We introduce a method that adapts object models acquired in a particular visual domain to new imaging conditions by learning a transformation that minimizes the effect of domain-induced changes in the feature distribution. The transformation is learned in a supervised manner and can be applied to categories for which there are no labeled examples in the new domain. While we focus our evaluation on object recognition tasks, the transform-based adaptation technique we develop is general and could be applied to nonimage data. Another contribution is a new multi-domain object database, freely available for download. We experimentally demonstrate the ability of our method to improve recognition on categories with few or no target domain labels and moderate to large changes in the imaging conditions.

2,624 citations