scispace - formally typeset
Search or ask a question
Author

Anna Buchman

Bio: Anna Buchman is an academic researcher from University of California, San Diego. The author has contributed to research in topics: Population & Gene drive. The author has an hindex of 15, co-authored 42 publications receiving 994 citations. Previous affiliations of Anna Buchman include University of California, Berkeley & North Carolina State University.

Papers
More filters
Journal ArticleDOI
TL;DR: The different types of engineered gene drives and their potential applications are discussed, as well as current policies regarding the safety and regulation of gene drives for the manipulation of wild populations.
Abstract: Engineered gene drives - the process of stimulating the biased inheritance of specific genes - have the potential to enable the spread of desirable genes throughout wild populations or to suppress harmful species, and may be particularly useful for the control of vector-borne diseases such as malaria. Although several types of selfish genetic elements exist in nature, few have been successfully engineered in the laboratory thus far. With the discovery of RNA-guided CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats-CRISPR-associated 9) nucleases, which can be utilized to create, streamline and improve synthetic gene drives, this is rapidly changing. Here, we discuss the different types of engineered gene drives and their potential applications, as well as current policies regarding the safety and regulation of gene drives for the manipulation of wild populations.

382 citations

Journal ArticleDOI
TL;DR: A mathematical model is developed to estimate tolerable rates of homing-resistant allele generation to suppress a wild population of a given size and results suggest that the size of the population that can be suppressed increases exponentially with the number of multiplexed gRNAs and that a mosquito species could potentially be suppressed on a continental scale.
Abstract: The recent development of a CRISPR-Cas9-based homing system for the suppression of Anopheles gambiae is encouraging; however, with current designs, the slow emergence of homing-resistant alleles is expected to result in suppressed populations rapidly rebounding, as homing-resistant alleles have a significant fitness advantage over functional, population-suppressing homing alleles. To explore this concern, we develop a mathematical model to estimate tolerable rates of homing-resistant allele generation to suppress a wild population of a given size. Our results suggest that, to achieve meaningful population suppression, tolerable rates of resistance allele generation are orders of magnitude smaller than those observed for current designs for CRISPR-Cas9-based homing systems. To remedy this, we theoretically explore a homing system architecture in which guide RNAs (gRNAs) are multiplexed, increasing the effective homing rate and decreasing the effective resistant allele generation rate. Modeling results suggest that the size of the population that can be suppressed increases exponentially with the number of multiplexed gRNAs and that, with four multiplexed gRNAs, a mosquito species could potentially be suppressed on a continental scale. We also demonstrate successful proof-of-principle use of multiplexed ribozyme flanked gRNAs to induce mutations in vivo in Drosophila melanogaster - a strategy that could readily be adapted to engineer stable, homing-based drives in relevant organisms.

134 citations

Journal ArticleDOI
TL;DR: The results suggest that this gene drive could maintain itself at high frequencies in a wild population and spread to fixation if either its fitness costs or toxin resistance were reduced, providing a clear path forward for developing future such systems in this pest.
Abstract: Synthetic gene drive systems possess enormous potential to replace, alter, or suppress wild populations of significant disease vectors and crop pests; however, their utility in diverse populations remains to be demonstrated. Here, we report the creation of a synthetic Medea gene drive system in a major worldwide crop pest, Drosophila suzukii We demonstrate that this drive system, based on an engineered maternal "toxin" coupled with a linked embryonic "antidote," is capable of biasing Mendelian inheritance rates with up to 100% efficiency. However, we find that drive resistance, resulting from naturally occurring genetic variation and associated fitness costs, can be selected for and hinder the spread of such a drive. Despite this, our results suggest that this gene drive could maintain itself at high frequencies in a wild population and spread to fixation if either its fitness costs or toxin resistance were reduced, providing a clear path forward for developing future such systems in this pest.

101 citations

Journal ArticleDOI
TL;DR: The generation of Aedes aegypti mosquitoes that are engineered to be resistant to Zika virus (ZIKV) transmission is described, and a polycistronic cluster of engineered synthetic small RNAs targeting ZIKV is demonstrated, ensuring the formation of mature synthetic smallRNAs in the midgut where ZikV resides in the early stages of infection.
Abstract: Recent Zika virus (ZIKV) outbreaks have highlighted the necessity for development of novel vector control strategies to combat arboviral transmission, including genetic versions of the sterile insect technique, artificial infection with Wolbachia to reduce population size and/or vectoring competency, and gene drive-based methods. Here, we describe the development of mosquitoes synthetically engineered to impede vector competence to ZIKV. We demonstrate that a polycistronic cluster of engineered synthetic small RNAs targeting ZIKV is expressed and fully processed in Aedes aegypti, ensuring the formation of mature synthetic small RNAs in the midgut where ZIKV resides in the early stages of infection. Critically, we demonstrate that engineered Ae. aegypti mosquitoes harboring the anti-ZIKV transgene have significantly reduced viral infection, dissemination, and transmission rates of ZIKV. Taken together, these compelling results provide a promising path forward for development of effective genetic-based ZIKV control strategies, which could potentially be extended to curtail other arboviruses.

75 citations

Journal ArticleDOI
TL;DR: The creation of engineered translocation-bearing strains of Drosophila melanogaster are reported, generated through targeted chromosomal breakage and homologous recombination, which drive high threshold population replacement in laboratory populations.
Abstract: Replacement of wild insect populations with transgene-bearing individuals unable to transmit disease or survive under specific environmental conditions using gene drive provides a self-perpetuating method of disease prevention. Mechanisms that require the gene drive element and linked cargo to exceed a high threshold frequency in order for spread to occur are attractive because they offer several points of control: they bring about local, but not global population replacement; and transgenes can be eliminated by reintroducing wildtypes into the population so as to drive the frequency of transgenes below the threshold frequency required for drive. Reciprocal chromosome translocations were proposed as a tool for bringing about high threshold population replacement in 1940 and 1968. However, translocations able to achieve this goal have only been reported once, in the spider mite Tetranychus urticae, a haplo-diploid species in which there is strong selection in haploid males for fit homozygotes. We report th...

73 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: It is found that CRISPR–Cas9-targeted disruption of the intron 4–exon 5 boundary aimed at blocking the formation of functional AgdsxF did not affect male development or fertility, whereas females homozygous for the disrupted allele showed an intersex phenotype and complete sterility.
Abstract: In the human malaria vector Anopheles gambiae, the gene doublesex (Agdsx) encodes two alternatively spliced transcripts, dsx-female (AgdsxF) and dsx-male (AgdsxM), that control differentiation of the two sexes. The female transcript, unlike the male, contains an exon (exon 5) whose sequence is highly conserved in all Anopheles mosquitoes so far analyzed. We found that CRISPR-Cas9-targeted disruption of the intron 4-exon 5 boundary aimed at blocking the formation of functional AgdsxF did not affect male development or fertility, whereas females homozygous for the disrupted allele showed an intersex phenotype and complete sterility. A CRISPR-Cas9 gene drive construct targeting this same sequence spread rapidly in caged mosquitoes, reaching 100% prevalence within 7-11 generations while progressively reducing egg production to the point of total population collapse. Owing to functional constraint of the target sequence, no selection of alleles resistant to the gene drive occurred in these laboratory experiments. Cas9-resistant variants arose in each generation at the target site but did not block the spread of the drive.

584 citations

Journal ArticleDOI
TL;DR: The basic biology of these viruses, their life cycles, the diseases they cause and available therapeutic options are reviewed, and the global distribution of flaviviruses is discussed, with a focus on lesser-known species that have the potential to emerge more broadly in human populations.
Abstract: Flaviviruses are vector-borne RNA viruses that can emerge unexpectedly in human populations and cause a spectrum of potentially severe diseases including hepatitis, vascular shock syndrome, encephalitis, acute flaccid paralysis, congenital abnormalities and fetal death. This epidemiological pattern has occurred numerous times during the last 70 years, including epidemics of dengue virus and West Nile virus, and the most recent explosive epidemic of Zika virus in the Americas. Flaviviruses are now globally distributed and infect up to 400 million people annually. Of significant concern, outbreaks of other less well-characterized flaviviruses have been reported in humans and animals in different regions of the world. The potential for these viruses to sustain epidemic transmission among humans is poorly understood. In this Review, we discuss the basic biology of flaviviruses, their infectious cycles, the diseases they cause and underlying host immune responses to infection. We describe flaviviruses that represent an established ongoing threat to global health and those that have recently emerged in new populations to cause significant disease. We also provide examples of lesser-known flaviviruses that circulate in restricted areas of the world but have the potential to emerge more broadly in human populations. Finally, we discuss how an understanding of the epidemiology, biology, structure and immunity of flaviviruses can inform the rapid development of countermeasures to treat or prevent human infections as they emerge. Flaviviruses, a group of vector-borne RNA viruses that includes dengue virus, West Nile virus, Zika virus and several lesser-known species, often emerge in human populations and cause epidemics. Here, Pierson and Diamond review the basic biology of these viruses, their life cycles, the diseases they cause and available therapeutic options. They also discuss the global distribution of flaviviruses, with a focus on lesser-known species that have the potential to emerge more broadly in human populations.

412 citations

Journal ArticleDOI
TL;DR: The different types of engineered gene drives and their potential applications are discussed, as well as current policies regarding the safety and regulation of gene drives for the manipulation of wild populations.
Abstract: Engineered gene drives - the process of stimulating the biased inheritance of specific genes - have the potential to enable the spread of desirable genes throughout wild populations or to suppress harmful species, and may be particularly useful for the control of vector-borne diseases such as malaria. Although several types of selfish genetic elements exist in nature, few have been successfully engineered in the laboratory thus far. With the discovery of RNA-guided CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats-CRISPR-associated 9) nucleases, which can be utilized to create, streamline and improve synthetic gene drives, this is rapidly changing. Here, we discuss the different types of engineered gene drives and their potential applications, as well as current policies regarding the safety and regulation of gene drives for the manipulation of wild populations.

382 citations

Journal ArticleDOI
TL;DR: Genetics can potentially provide new, species-specific, environmentally friendly methods for mosquito control and several methods with different molecular biology are under development and the first field trials have been completed successfully.
Abstract: Genetics can potentially provide new, species-specific, environmentally friendly methods for mosquito control. Genetic control strategies aim either to suppress target populations or to introduce a harm-reducing novel trait. Different approaches differ considerably in their properties, especially between self-limiting strategies, where the modification has limited persistence, and self-sustaining strategies, which are intended to persist indefinitely in the target population and may invade other populations. Several methods with different molecular biology are under development and the first field trials have been completed successfully.

361 citations

Journal ArticleDOI
TL;DR: It is demonstrated that the tRNA–sgRNA system markedly increases the efficacy of conditional gene disruption by Cas9 and can promote editing by the recently discovered RNA-guided endonuclease Cpf1.
Abstract: We present tRNA-based vectors for producing multiple clustered regularly interspaced short palindromic repeats (CRISPR) single guide RNAs (sgRNAs) from a single RNA polymerase II or III transcript in Drosophila. The system, which is based on liberation of sgRNAs by processing flanking tRNAs, permits highly efficient multiplexing of Cas9-based mutagenesis. We also demonstrate that the tRNA-sgRNA system markedly increases the efficacy of conditional gene disruption by Cas9 and can promote editing by the recently discovered RNA-guided endonuclease Cpf1.

338 citations