scispace - formally typeset
Search or ask a question
Author

Anna K. Bassil

Bio: Anna K. Bassil is an academic researcher from GlaxoSmithKline. The author has contributed to research in topics: Receptor & Bromodomain. The author has an hindex of 16, co-authored 22 publications receiving 1184 citations.

Papers
More filters
Journal ArticleDOI
19 Mar 2020-Science
TL;DR: It is found that steady-state gene expression primarily requires BD1, whereas the rapid increase of gene expression induced by inflammatory stimuli requires both BD1 and BD2 of all BET proteins, which may guide future BET-targeted therapies.
Abstract: The two tandem bromodomains of the BET (bromodomain and extraterminal domain) proteins enable chromatin binding to facilitate transcription. Drugs that inhibit both bromodomains equally have shown efficacy in certain malignant and inflammatory conditions. To explore the individual functional contributions of the first (BD1) and second (BD2) bromodomains in biology and therapy, we developed selective BD1 and BD2 inhibitors. We found that steady-state gene expression primarily requires BD1, whereas the rapid increase of gene expression induced by inflammatory stimuli requires both BD1 and BD2 of all BET proteins. BD1 inhibitors phenocopied the effects of pan-BET inhibitors in cancer models, whereas BD2 inhibitors were predominantly effective in models of inflammatory and autoimmune disease. These insights into the differential requirement of BD1 and BD2 for the maintenance and induction of gene expression may guide future BET-targeted therapies.

232 citations

Journal ArticleDOI
01 Jan 2013-Blood
TL;DR: Preclinical studies show that I-BET762 has a favorable pharmacologic profile as an oral agent and that it inhibits myeloma cell proliferation, resulting in survival advantage in a systemicMyeloma xenograft model.

189 citations

Journal ArticleDOI
TL;DR: In this paper, the authors determined the cellular localisation and distribution of GHS-R-immunoreactivity (-Ir) using immunofluorescent histochemistry and explore the function of ghrelin in both human and rat isolated gastric and/or colonic circular muscle preparations in which nerve-mediated responses were evoked by electrical field stimulation.

172 citations

Journal ArticleDOI
TL;DR: It is found that SCFAs can modulate intestinal motility, but these effects can be independent of the GPR43 receptor.
Abstract: The G protein-coupled receptors, GPR41 and GPR43, are activated by short-chain fatty acids (SCFAs), with distinct rank order potencies. This study investigated the possibility that SCFAs modulate intestinal motility via these receptors. Luminal SCFA concentrations within the rat intestine were greatest in the caecum (c. 115 mmol L(-1)) and proximal colon. Using similar concentrations (0.1-100 mmol L(-1)), SCFAs were found to inhibit electrically evoked, neuronally mediated contractions of rat distal colon, possibly via a prejunctional site of action; this activity was independent of the presence or absence of the mucosa. By contrast, SCFAs reduced the amplitude but also reduced the threshold and increased the frequency of peristaltic contractions in guinea-pig terminal ileum. In each model, the rank-order of activity was acetate (C2) approximately propionate (C3) approximately butyrate (C4) > pentanoate (C5) approximately formate (C1), consistent with activity at the GPR43 receptor. GPR43 mRNA was expressed throughout the rat gut, with highest levels in the colon. However, the ability of SCFAs to inhibit neuronally mediated contractions of the colon was similar in tissues from wild-type and GPR43 gene knockout mice, with identical rank-orders of potency. In conclusion, SCFAs can modulate intestinal motility, but these effects can be independent of the GPR43 receptor.

154 citations

Journal ArticleDOI
TL;DR: Obestatin, encoded by the ghrelin gene may inhibit gastrointestinal (GI) motility and this activity was re‐investigated.
Abstract: BACKGROUND AND PURPOSE: Obestatin, encoded by the ghrelin gene may inhibit gastrointestinal (GI) motility. This activity was re-investigated.EXPERIMENTAL APPROACH: Rat GI motility was studied in vi ...

106 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The present document has been written by a group of both academic and industry experts and aims to validate and expand the original idea of the prebiotic concept, defined as the selective stimulation of growth and/or activity of one or a limited number of microbial genus(era)/species in the gut microbiota that confer(s) health benefits to the host.
Abstract: The different compartments of the gastrointestinal tract are inhabited by populations of micro-organisms. By far the most important predominant populations are in the colon where a true symbiosis with the host exists that is a key for well-being and health. For such a microbiota, 'normobiosis' characterises a composition of the gut 'ecosystem' in which micro-organisms with potential health benefits predominate in number over potentially harmful ones, in contrast to 'dysbiosis', in which one or a few potentially harmful micro-organisms are dominant, thus creating a disease-prone situation. The present document has been written by a group of both academic and industry experts (in the ILSI Europe Prebiotic Expert Group and Prebiotic Task Force, respectively). It does not aim to propose a new definition of a prebiotic nor to identify which food products are classified as prebiotic but rather to validate and expand the original idea of the prebiotic concept (that can be translated in 'prebiotic effects'), defined as: 'The selective stimulation of growth and/or activity(ies) of one or a limited number of microbial genus(era)/species in the gut microbiota that confer(s) health benefits to the host.' Thanks to the methodological and fundamental research of microbiologists, immense progress has very recently been made in our understanding of the gut microbiota. A large number of human intervention studies have been performed that have demonstrated that dietary consumption of certain food products can result in statistically significant changes in the composition of the gut microbiota in line with the prebiotic concept. Thus the prebiotic effect is now a well-established scientific fact. The more data are accumulating, the more it will be recognised that such changes in the microbiota's composition, especially increase in bifidobacteria, can be regarded as a marker of intestinal health. The review is divided in chapters that cover the major areas of nutrition research where a prebiotic effect has tentatively been investigated for potential health benefits. The prebiotic effect has been shown to associate with modulation of biomarkers and activity(ies) of the immune system. Confirming the studies in adults, it has been demonstrated that, in infant nutrition, the prebiotic effect includes a significant change of gut microbiota composition, especially an increase of faecal concentrations of bifidobacteria. This concomitantly improves stool quality (pH, SCFA, frequency and consistency), reduces the risk of gastroenteritis and infections, improves general well-being and reduces the incidence of allergic symptoms such as atopic eczema. Changes in the gut microbiota composition are classically considered as one of the many factors involved in the pathogenesis of either inflammatory bowel disease or irritable bowel syndrome. The use of particular food products with a prebiotic effect has thus been tested in clinical trials with the objective to improve the clinical activity and well-being of patients with such disorders. Promising beneficial effects have been demonstrated in some preliminary studies, including changes in gut microbiota composition (especially increase in bifidobacteria concentration). Often associated with toxic load and/or miscellaneous risk factors, colon cancer is another pathology for which a possible role of gut microbiota composition has been hypothesised. Numerous experimental studies have reported reduction in incidence of tumours and cancers after feeding specific food products with a prebiotic effect. Some of these studies (including one human trial) have also reported that, in such conditions, gut microbiota composition was modified (especially due to increased concentration of bifidobacteria). Dietary intake of particular food products with a prebiotic effect has been shown, especially in adolescents, but also tentatively in postmenopausal women, to increase Ca absorption as well as bone Ca accretion and bone mineral density. Recent data, both from experimental models and from human studies, support the beneficial effects of particular food products with prebiotic properties on energy homaeostasis, satiety regulation and body weight gain. Together, with data in obese animals and patients, these studies support the hypothesis that gut microbiota composition (especially the number of bifidobacteria) may contribute to modulate metabolic processes associated with syndrome X, especially obesity and diabetes type 2. It is plausible, even though not exclusive, that these effects are linked to the microbiota-induced changes and it is feasible to conclude that their mechanisms fit into the prebiotic effect. However, the role of such changes in these health benefits remains to be definitively proven. As a result of the research activity that followed the publication of the prebiotic concept 15 years ago, it has become clear that products that cause a selective modification in the gut microbiota's composition and/or activity(ies) and thus strengthens normobiosis could either induce beneficial physiological effects in the colon and also in extra-intestinal compartments or contribute towards reducing the risk of dysbiosis and associated intestinal and systemic pathologies.

1,786 citations

Journal ArticleDOI
TL;DR: This Review summarizes existing knowledge on the potential of SCFAs to directly or indirectly mediate microbiota–gut–brain interactions and their interaction with gut–brain signalling pathways including immune, endocrine, neural and humoral routes.
Abstract: Short-chain fatty acids (SCFAs), the main metabolites produced by bacterial fermentation of dietary fibre in the gastrointestinal tract, are speculated to have a key role in microbiota-gut-brain crosstalk. However, the pathways through which SCFAs might influence psychological functioning, including affective and cognitive processes and their neural basis, have not been fully elucidated. Furthermore, research directly exploring the role of SCFAs as potential mediators of the effects of microbiota-targeted interventions on affective and cognitive functioning is sparse, especially in humans. This Review summarizes existing knowledge on the potential of SCFAs to directly or indirectly mediate microbiota-gut-brain interactions. The effects of SCFAs on cellular systems and their interaction with gut-brain signalling pathways including immune, endocrine, neural and humoral routes are described. The effects of microbiota-targeted interventions such as prebiotics, probiotics and diet on psychological functioning and the putative mediating role of SCFA signalling will also be discussed, as well as the relationship between SCFAs and psychobiological processes. Finally, future directions to facilitate direct investigation of the effect of SCFAs on psychological functioning are outlined.

1,206 citations

Journal ArticleDOI
TL;DR: A review of the role of leptin and ghrelin in food intake and body weight in humans and their mechanism of action is presented in this article, where possible abnormalities in the leptin and Ghrelin systems that may contribute to the development of obesity are discussed.
Abstract: Leptin and ghrelin are two hormones that have been recognized to have a major influence on energy balance. Leptin is a mediator of long-term regulation of energy balance, suppressing food intake and thereby inducing weight loss. Ghrelin on the other hand is a fast-acting hormone, seemingly playing a role in meal initiation. As a growing number of people suffer from obesity, understanding the mechanisms by which various hormones and neurotransmitters have influence on energy balance has been a subject of intensive research. In obese subjects the circulating level of the anorexigenic hormone leptin is increased, whereas surprisingly, the level of the orexigenic hormone ghrelin is decreased. It is now established that obese patients are leptin-resistant. However, the manner in which both the leptin and ghrelin systems contribute to the development or maintenance of obesity is as yet not clear. The purpose of this review is to provide background information on the leptin and ghrelin hormones, their role in food intake and body weight in humans, and their mechanism of action. Possible abnormalities in the leptin and ghrelin systems that may contribute to the development of obesity will be mentioned. In addition, the potentials of leptin and ghrelin as drug targets will be discussed. Finally, the influence of the diet on leptin and ghrelin secretion and functioning will be described.

1,163 citations

Journal ArticleDOI
TL;DR: Recent progress in the development of bromodomain inhibitors is highlighted, and their potential applications in drug discovery are highlighted.
Abstract: Lysine acetylation is a key mechanism that regulates chromatin structure; aberrant acetylation levels have been linked to the development of several diseases. Acetyl-lysine modifications create docking sites for bromodomains, which are small interaction modules found on diverse proteins, some of which have a key role in the acetylation-dependent assembly of transcriptional regulator complexes. These complexes can then initiate transcriptional programmes that result in phenotypic changes. The recent discovery of potent and highly specific inhibitors for the BET (bromodomain and extra-terminal) family of bromodomains has stimulated intensive research activity in diverse therapeutic areas, particularly in oncology, where BET proteins regulate the expression of key oncogenes and anti-apoptotic proteins. In addition, targeting BET bromodomains could hold potential for the treatment of inflammation and viral infection. Here, we highlight recent progress in the development of bromodomain inhibitors, and their potential applications in drug discovery.

1,090 citations

Journal Article
TL;DR: Investigations compel the view that the ratio of the vital capacity to the body length, trunk length, chest circumference, surface area or weight or any combination of these measurements, is too variable to admit of any workable standard or normal value.
Abstract: These investigations and several others that have beenpublishedwithin recentyears compel us us to hold the view that the ratio of the vital capacity to the body length, trunk length, chest circumference,surfacearea or weight or any combination of thesemeasurements, is too variable to admit of any workable standardor normal value. On the other hand the vital capacity of each individual, after he had becomeaccustomedto the use of the spirometer,will be found to be subjectto but small variations as long as good health is maintained. Thereseems to beevidenceto show that a reductionin the vital capacityis ofen the first sign of a progressivedamageto the respiratorytissue.

986 citations