scispace - formally typeset
Search or ask a question
Author

Anna L. Jongerius

Bio: Anna L. Jongerius is an academic researcher from Utrecht University. The author has contributed to research in topics: Catalysis & Guaiacol. The author has an hindex of 7, co-authored 7 publications receiving 4150 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Biomass is an important feedstock for the renewable production of fuels, chemicals, and energy, and it recently surpassed hydroelectric energy as the largest domestic source of renewable energy.
Abstract: Biomass is an important feedstock for the renewable production of fuels, chemicals, and energy. As of 2005, over 3% of the total energy consumption in the United States was supplied by biomass, and it recently surpassed hydroelectric energy as the largest domestic source of renewable energy. Similarly, the European Union received 66.1% of its renewable energy from biomass, which thus surpassed the total combined contribution from hydropower, wind power, geothermal energy, and solar power. In addition to energy, the production of chemicals from biomass is also essential; indeed, the only renewable source of liquid transportation fuels is currently obtained from biomass.

3,644 citations

Journal ArticleDOI
TL;DR: In this article, an extended reaction network is proposed, showing that HDO, demethylation, and hydrogenation reactions take place simultaneously, starting from most positions in the network, phenol and cresols are therefore the main final products, suggesting the possibility of convergence on a limited number of products from a mixture of substrates.

285 citations

Journal ArticleDOI
TL;DR: A catalytic process to valorize lignin using a mixture of cheap, bio-renewable ethanol and water as solvent is demonstrated and the molecular weight of the dissolved lignins was shown to be reduced by gel permeation chromatography and quantitative HSQC NMR methods.
Abstract: With dwindling reserves of fossil feedstock as a resource for chemicals production, the fraction of chemicals and energy supplied by alternative, renewable resources, such as lignin, can be expected to increase in the foreseeable future. Here, we demonstrate a catalytic process to valorize lignin (exemplified with kraft, organosolv, and sugarcane bagasse lignin) using a mixture of cheap, bio-renewable ethanol and water as solvent. Ethanol/water mixtures readily solubilize lignin under moderate temperatures and pressures with little residual solids. The molecular weight of the dissolved lignins was shown to be reduced by gel permeation chromatography and quantitative HSQC NMR methods. The use of liquid-phase reforming of the solubilized lignin over a Pt/Al2O3 catalyst at 498 K and 58 bar is introduced to yield up to 17 % combined yield of monomeric aromatic oxygenates such as guaiacol and substituted guaiacols generating hydrogen as a useful by-product. Reduction of the lignin dissolved in ethanol/water using a supported transition metal catalyst at 473 K and 30 bar hydrogen yields up to 6 % of cyclic hydrocarbons and aromatics.

267 citations

Journal ArticleDOI
TL;DR: In this article, the molybdenum carbide-based catalyst showed a higher activity than W2C/CNF and yielded more completely deoxygenated aromatic products, such as benzene and toluene.
Abstract: Hydrodeoxygenation (HDO) studies over carbon nanofiber-supported (CNF) W2C and Mo2C catalysts were performed on guaiacol, a prototypical substrate to evaluate the potential of a catalyst for valorization of depolymerized lignin streams. Typical reactions were executed at 55 bar hydrogen pressure over a temperature range of 300–375?°C for 4 h in dodecane, using a batch autoclave system. Combined selectivities of up to 87 and 69?% to phenol and methylated phenolics were obtained at 375?°C for W2C/CNF and Mo2C/CNF at >99?% conversion, respectively. The molybdenum carbide-based catalyst showed a higher activity than W2C/CNF and yielded more completely deoxygenated aromatic products, such as benzene and toluene. Catalyst recycling experiments, performed with and without regeneration of the carbide phase, showed that the Mo2C/CNF catalyst was stable during reusability experiments. The most promising results were obtained with the Mo2C/CNF catalyst, as it showed a much higher activity and higher selectivity to phenolics compared to W2C/CNF.

192 citations

Journal ArticleDOI
TL;DR: In this article, a two-step approach to the conversion of organosolv, kraft and sugarcane bagasse lignin to monoaromatic compounds of low oxygen content is presented.

154 citations


Cited by
More filters
Journal ArticleDOI
16 May 2014-Science
TL;DR: Recent developments in genetic engineering, enhanced extraction methods, and a deeper understanding of the structure of lignin are yielding promising opportunities for efficient conversion of this renewable resource to carbon fibers, polymers, commodity chemicals, and fuels.
Abstract: Background Lignin, nature’s dominant aromatic polymer, is found in most terrestrial plants in the approximate range of 15 to 40% dry weight and provides structural integrity. Traditionally, most large-scale industrial processes that use plant polysaccharides have burned lignin to generate the power needed to productively transform biomass. The advent of biorefineries that convert cellulosic biomass into liquid transportation fuels will generate substantially more lignin than necessary to power the operation, and therefore efforts are underway to transform it to value-added products. Production of biofuels from cellulosic biomass requires separation of large quantities of the aromatic polymer lignin. In planta genetic engineering, enhanced extraction methods, and a deeper understanding of the structure of lignin are yielding promising opportunities for efficient conversion of this renewable resource to carbon fibers, polymers, commodity chemicals, and fuels. [Credit: Oak Ridge National Laboratory, U.S. Department of Energy] Advances Bioengineering to modify lignin structure and/or incorporate atypical components has shown promise toward facilitating recovery and chemical transformation of lignin under biorefinery conditions. The flexibility in lignin monomer composition has proven useful for enhancing extraction efficiency. Both the mining of genetic variants in native populations of bioenergy crops and direct genetic manipulation of biosynthesis pathways have produced lignin feedstocks with unique properties for coproduct development. Advances in analytical chemistry and computational modeling detail the structure of the modified lignin and direct bioengineering strategies for targeted properties. Refinement of biomass pretreatment technologies has further facilitated lignin recovery and enables catalytic modifications for desired chemical and physical properties. Outlook Potential high-value products from isolated lignin include low-cost carbon fiber, engineering plastics and thermoplastic elastomers, polymeric foams and membranes, and a variety of fuels and chemicals all currently sourced from petroleum. These lignin coproducts must be low cost and perform as well as petroleum-derived counterparts. Each product stream has its own distinct challenges. Development of renewable lignin-based polymers requires improved processing technologies coupled to tailored bioenergy crops incorporating lignin with the desired chemical and physical properties. For fuels and chemicals, multiple strategies have emerged for lignin depolymerization and upgrading, including thermochemical treatments and homogeneous and heterogeneous catalysis. The multifunctional nature of lignin has historically yielded multiple product streams, which require extensive separation and purification procedures, but engineering plant feedstocks for greater structural homogeneity and tailored functionality reduces this challenge.

2,958 citations

Journal ArticleDOI
TL;DR: This paper presents a new state-of-the-art implementation of the iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) Key Laborotary of Catalysis, which automates the very labor-intensive and therefore expensive and therefore time-heavy and expensive process ofalysis.
Abstract: and Fuels Changzhi Li,† Xiaochen Zhao,† Aiqin Wang,† George W. Huber,†,‡ and Tao Zhang*,† †State Key Laborotary of Catalysis, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China ‡Department of Chemical and Biological Engineering, University of WisconsinMadison, Madison, Wisconsin 53706, United States

1,977 citations

Journal ArticleDOI
TL;DR: In this paper, the potential of lignocellulosic biomass as an alternative platform to fossil resources has been analyzed and a critical review provides insights into the potential for LBS.

1,763 citations

Journal ArticleDOI
10 Aug 2012-Science
TL;DR: The opportunities for diverting existing residual biomass—the by-products of present agricultural and food-processing streams—to this end are highlighted.
Abstract: Most of the carbon-based compounds currently manufactured by the chemical industry are derived from petroleum. The rising cost and dwindling supply of oil have been focusing attention on possible routes to making chemicals, fuels, and solvents from biomass instead. In this context, many recent studies have assessed the relative merits of applying different dedicated crops to chemical production. Here, we highlight the opportunities for diverting existing residual biomass--the by-products of present agricultural and food-processing streams--to this end.

1,693 citations

Journal ArticleDOI
TL;DR: A broad review of the state-of-the-art biomass pyrolysis research can be found in this article, where three major components (cellulose, hemicellulose and lignin) are discussed in detail.

1,613 citations