scispace - formally typeset
Search or ask a question
Author

Anna Przybylska-Balcerek

Bio: Anna Przybylska-Balcerek is an academic researcher from University of Life Sciences in Poznań. The author has contributed to research in topics: Medicine & Food science. The author has an hindex of 3, co-authored 7 publications receiving 43 citations.
Topics: Medicine, Food science, Sorghum, Polyphenol, Chemistry

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors conducted quantitative analysis of selected bioactive compounds, i.e., phenolic acids, flavonoids, carotenoids, as well as micro- and macronutrients.
Abstract: Sorghum is a gluten-free cereal grown in many regions worldwide, primarily in the tropical, subtropical, and warm temperate climates. Sorghum has many varieties, e.g., red and white sorghum. While it is mainly grown for feed, sorghum is also used in the food industry. Sorghum grain shows health-promoting properties, as it is a rich source of antioxidants such as polyphenols, carotenoids, as well as micro- and macronutrients. The aim of this study was to conduct quantitative analysis of selected bioactive compounds, i.e., phenolic acids, flavonoids, carotenoids, as well as micro- and macronutrients. The tested material comprised grain of red and white sorghum. Quantitative analysis of polyphenols and carotenoids consisted in alkaline and acid hydrolysis, followed by analyses using an ultra-performance liquid chromatograph coupled with a photodiode array detector (UPLC-PDA). Based on the analyses, it was stated that sorghum grain is a rich source of bioactive compounds, which exhibit antioxidant properties, and, for this reason, it may be classified as functional food.

38 citations

Journal ArticleDOI
TL;DR: In this article, the influence of weather conditions on bioactive compound content in sorghum grain was analyzed using an ultra-efficient liquid chromatograph coupled with an absorption-based detector (UPLC-PDA).
Abstract: Sorghum is the fifth most important cereal in the world in terms of the cropped area. It is mainly grown for feeding animals and it is also used in the food industry. Sorghum grain is generally a rich source of antioxidants such as polyphenols and carotenoids. For this reason, it is considered as a good source of bioactive food components and it has health-promoting properties. Sorghum is a gluten-free cereal grown in many regions worldwide, primarily in the tropical and subtropical regions. However, new hybrids and forms of sorghum are capable to produce seeds also in temperate climate. The aim of this study was to conduct the influence of weather conditions on bioactive compound content in sorghum grain. The quantitative analysis of selected bioactive compounds, such as phenolic acids, flavonoids, carotenoids, and phytosterols, was carried out. The tested material comprised grain of two varieties: ‘Sweet Susana’ and ‘Sweet Caroline’, which have different color of grain: red and white. The research material was obtained from growing seasons 2016–2018. Quantitative analysis of free phenolic acids, total carotenoids, and total phytosterols was performed by ultra-performance liquid chromatography (UPLC) after prior basic hydrolysis followed by acid. An ultra-efficient liquid chromatograph coupled with an absorption-based detector (UPLC-PDA) was used for these analyses. The results showed the variability of the content of bioactive compounds depending on weather conditions.

29 citations

Journal ArticleDOI
TL;DR: In this article, the antibacterial activity of elderberry fruit extracts was investigated and the results of the microbiological and chemical analyses of the composition of the extracts were analyzed statistically to indicate the bioactive compounds of the greatest antimicrobial significance.
Abstract: Due to the health-promoting properties of elderberry fruits, which result from their rich chemical composition, this raw material is widely used in herbal medicine and the food industry. The aim of the study was to demonstrate the antibacterial activity of the elderberry fruit extracts. The research showed that the content of phenolic acids and flavonoids in the extracts determined their antibacterial activity. The research showed that the content of phenolic acids and flavonoids in the extracts determined their antibacterial activity. The following phenolic acids were predominant: chlorogenic acid, sinapic acid, and t-cinnamic acid. Their average content was, respectively, 139.09, 72.84, 51.29 mg/g extract. Rutin and quercetin (their average content was 1105.39 and 306.6 mg/g extract, respectively) were the dominant flavonoids. The research showed that the elderberry polyphenol extracts exhibited activity against selected strains of bacteria within the concentration range of 0.5-0.05%. The following bacteria were the most sensitive to the extracts: Micrococcus luteus, Proteus mirabilis, Pseudomonas fragii, and Escherichia coli. Of the compounds under analysis, apigenin, kaempferol and ferulic, protocatechuic, and p-coumarin acids had the greatest influence on the high antibacterial activity of elderberry extracts. The results of the microbiological and chemical analyses of the composition of the extracts were analyzed statistically to indicate the bioactive compounds of the greatest antimicrobial significance.

26 citations

Journal ArticleDOI
TL;DR: This paper presents the results of literature studies conducted to systematise the knowledge on phenolic compounds found in trees and shrubs native to central Europe, and indicates gaps in the present knowledge.
Abstract: Plants produce specific structures constituting barriers, hindering the penetration of pathogens, while they also produce substances inhibiting pathogen growth. These compounds are secondary metabolites, such as phenolics, terpenoids, sesquiterpenoids, resins, tannins and alkaloids. Bioactive compounds are secondary metabolites from trees and shrubs and are used in medicine, herbal medicine and cosmetology. To date, fruits and flowers of exotic trees and shrubs have been primarily used as sources of bioactive compounds. In turn, the search for new sources of bioactive compounds is currently focused on native plant species due to their availability. The application of such raw materials needs to be based on knowledge of their chemical composition, particularly health-promoting or therapeutic compounds. Research conducted to date on European trees and shrubs has been scarce. This paper presents the results of literature studies conducted to systematise the knowledge on phenolic compounds found in trees and shrubs native to central Europe. The aim of this review is to provide available information on the subject and to indicate gaps in the present knowledge.

18 citations

Journal ArticleDOI
TL;DR: It was found that weather conditions deviating from the long-term average, both in terms of temperature and precipitation, did not affect the quantitative profile of fatty acids.
Abstract: The aim of this study was to determine the influence of weather conditions over the course of 4 years (2016–2019) on the fatty acid profile of Camelina sativa. It was assumed that varieties and functional forms of plants (spring and winter genotypes) were characterized by a different fatty acid composition and that weather conditions affected the profile of fatty acids in camelina seeds. Statistical analyses were performed based on the results of chemical tests. Differences were found in the mean concentrations of C18:3n3, C18:3n6, C20:2 and C22:1 acids in all genotypes based on the Kruskal test. Two winter genotypes (Maczuga and 15/2/3) and the spring genotype UP2017/02 had the significantly highest content of C18:3n6. Genotypes CSS-CAM31, CSS-CAM30, BRSCHW 28347, CSS-CAM36 and Kirgzkij showed the highest content of C18:3n3. The lowest C18:3n3 content was found in winter genotypes: K9/1, 15/2/3, Przybrodzka (winter form) and C5. It was found that weather conditions deviating from the long-term average, both in terms of temperature and precipitation, did not affect the quantitative profile of fatty acids. Over the 4 years, no differences were observed in the fatty acid profile between the spring and winter forms. Observations made in this study allow to state that spring and winter forms of Camelina sativa retain a constant fatty acid composition regardless of changing weather conditions.

13 citations


Cited by
More filters
01 Jan 2017
TL;DR: In this paper, the authors synthesized previous meta-analysis studies summarizing the results of numerous independent field experiments on drought and its effect on the production of cereal, legume, root and/or tuber (root/tuber) crops.
Abstract: As a result of climate change, drought is predicted to pose greater pressure on food production system than in the past. At the same time, crop yield co-varies with both environmental (e.g., water, temperature, aridity) and agronomic variables (i.e., crop species, soil texture, phenological phase). To improve our quantitative understanding on the effects of these co-varying factors on agricultural productivity, we synthesized previous meta-analysis studies summarizing the results of numerous independent field experiments on drought and its effect on the production of cereal, legume, root and/or tuber (root/tuber) crops. We also included new crops species that were not covered in previous meta-analyses and the effects of heat stress. Our results indicated that cereals tended to be more drought resistant than legumes and root/tubers. Most crops were more sensitive to drought during their reproductive (i.e., grains filling, tuber initiation) than during their vegetative phase, except for wheat, which was also sensitive during vegetative phase. Recovery from drought impact at reproductive phase was either: (i) unfeasible for crops experiencing damage to their reproductive organs (e.g., maize, rice) or (ii) limited for root/tuber crops, provided that water was abundant during the subsequent root/tuber bulking period. Across soil texture, the variability of yield reduction for cereals was also lower in comparison to legume or root/tuber crops, probably due to the extensive and deep rooting system of cereal crops. As crop species, plant phenology, and soil texture were important co-varying factors in determining drought-induced crop yield reduction, no single approach would be sufficient to improve crop performance during drought. Consequently, a combination of approaches, particularly site-specific management practices that consider soil conditions (i.e., intercropping, mulching, and crop rotation) and selection of crop varieties adjusted to the local climate should be adopted in order to improve the sustainability of agricultural production in a changing climate.

164 citations

Journal ArticleDOI
TL;DR: The analysis of this review emphasizes the valorization of sorghum as a source of bioactive substances and the importance they confer on human health because of the biological potential it has.
Abstract: Sorghum is the fifth cereal most produced in the world after wheat, rice, maize, and barley. In some regions, this crop is replacing maize, due to its high yield, resistance to drought and heat. There are several varieties of sorghum, whose coloration varies from cream, lemon-yellow, red, and even black. Pigmented sorghum grain is a rich source of antioxidants like polyphenols, mainly tannins, which have multiple benefits on human health such as, antiproliferative properties associated with the prevention of certain cancers, antioxidant activities related to the prevention of associated diseases to oxidative stress, antimicrobial and anti-inflammatory effects, it also improves glucose metabolism. Despite having these types of compounds, it is not possible to assimilate them, their use in the food industry has been limited, since sorghum is considered a food of low nutritional value, due to the presence of anti-nutritional factors such as strong tannins which form complexes with proteins and iron, thus reducing their digestibility. Based on these restrictions that this product has had as food for humans, the analysis of this review emphasizes the valorization of sorghum as a source of bioactive substances and the importance they confer on human health because of the biological potential it has.

34 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present an overview of alternative foods that can be explored as sources of nutrients to fight hunger and malnutrition, improve food production and the economic growth of nations, some of them cultivated mostly in Brazil.

32 citations

Journal ArticleDOI
TL;DR: In this article, the influence of weather conditions on bioactive compound content in sorghum grain was analyzed using an ultra-efficient liquid chromatograph coupled with an absorption-based detector (UPLC-PDA).
Abstract: Sorghum is the fifth most important cereal in the world in terms of the cropped area. It is mainly grown for feeding animals and it is also used in the food industry. Sorghum grain is generally a rich source of antioxidants such as polyphenols and carotenoids. For this reason, it is considered as a good source of bioactive food components and it has health-promoting properties. Sorghum is a gluten-free cereal grown in many regions worldwide, primarily in the tropical and subtropical regions. However, new hybrids and forms of sorghum are capable to produce seeds also in temperate climate. The aim of this study was to conduct the influence of weather conditions on bioactive compound content in sorghum grain. The quantitative analysis of selected bioactive compounds, such as phenolic acids, flavonoids, carotenoids, and phytosterols, was carried out. The tested material comprised grain of two varieties: ‘Sweet Susana’ and ‘Sweet Caroline’, which have different color of grain: red and white. The research material was obtained from growing seasons 2016–2018. Quantitative analysis of free phenolic acids, total carotenoids, and total phytosterols was performed by ultra-performance liquid chromatography (UPLC) after prior basic hydrolysis followed by acid. An ultra-efficient liquid chromatograph coupled with an absorption-based detector (UPLC-PDA) was used for these analyses. The results showed the variability of the content of bioactive compounds depending on weather conditions.

29 citations

Journal ArticleDOI
TL;DR: In this article, the antibacterial activity of elderberry fruit extracts was investigated and the results of the microbiological and chemical analyses of the composition of the extracts were analyzed statistically to indicate the bioactive compounds of the greatest antimicrobial significance.
Abstract: Due to the health-promoting properties of elderberry fruits, which result from their rich chemical composition, this raw material is widely used in herbal medicine and the food industry. The aim of the study was to demonstrate the antibacterial activity of the elderberry fruit extracts. The research showed that the content of phenolic acids and flavonoids in the extracts determined their antibacterial activity. The research showed that the content of phenolic acids and flavonoids in the extracts determined their antibacterial activity. The following phenolic acids were predominant: chlorogenic acid, sinapic acid, and t-cinnamic acid. Their average content was, respectively, 139.09, 72.84, 51.29 mg/g extract. Rutin and quercetin (their average content was 1105.39 and 306.6 mg/g extract, respectively) were the dominant flavonoids. The research showed that the elderberry polyphenol extracts exhibited activity against selected strains of bacteria within the concentration range of 0.5-0.05%. The following bacteria were the most sensitive to the extracts: Micrococcus luteus, Proteus mirabilis, Pseudomonas fragii, and Escherichia coli. Of the compounds under analysis, apigenin, kaempferol and ferulic, protocatechuic, and p-coumarin acids had the greatest influence on the high antibacterial activity of elderberry extracts. The results of the microbiological and chemical analyses of the composition of the extracts were analyzed statistically to indicate the bioactive compounds of the greatest antimicrobial significance.

26 citations