scispace - formally typeset
Search or ask a question
Author

Anna Qvarnström

Bio: Anna Qvarnström is an academic researcher from Uppsala University. The author has contributed to research in topics: Ficedula & Population. The author has an hindex of 45, co-authored 107 publications receiving 8559 citations. Previous affiliations of Anna Qvarnström include University of Oulu & Uppsala University Hospital.


Papers
More filters
Journal ArticleDOI
TL;DR: The role of phenotypic plasticity in stimulating evolution is assessed by considering two examples from birds: (i) the evolution of red and yellow plumage coloration due to carotenoid consumption; and (ii) the Evolution of foraging behaviours on islands.
Abstract: Models of population divergence and speciation are often based on the assumption that differences between populations are due to genetic factors, and that phenotypic change is due to natural selection. It is equally plausible that some of the differences among populations are due to phenotypic plasticity. We use the metaphor of the adaptive landscape to review the role of phenotypic plasticity in driving genetic evolution. Moderate levels of phenotypic plasticity are optimal in permitting population survival in a new environment and in bringing populations into the realm of attraction of an adaptive peak. High levels of plasticity may increase the probability of population persistence but reduce the likelihood of genetic change, because the plastic response itself places the population close to a peak. Moderate levels of plasticity arise whenever multiple traits, some of which are plastic and others not, form a composite trait involved in the adaptive response. For example, altered behaviours may drive selection on morphology and physiology. Because there is likely to be a considerable element of chance in which behaviours become established, behavioural change followed by morphological and physiological evolution may be a potent force in driving evolution in novel directions. We assess the role of phenotypic plasticity in stimulating evolution by considering two examples from birds: (i) the evolution of red and yellow plumage coloration due to carotenoid consumption; and (ii) the evolution of foraging behaviours on islands. Phenotypic plasticity is widespread in nature and may speed up, slow down, or have little effect on evolutionary change. Moderate levels of plasticity may often facilitate genetic evolution but careful analyses of individual cases are needed to ascertain whether plasticity has been essential or merely incidental to population differentiation.

1,325 citations

Journal ArticleDOI
29 Nov 2012-Nature
TL;DR: This study provides a roadmap to the emerging field of speciation genomics by showing that the genomic landscape of species differentiation is highly heterogeneous with approximately 50 ‘divergence islands’ showing up to 50-fold higher sequence divergence than the genomic background.
Abstract: Unravelling the genomic landscape of divergence between lineages is key to understanding speciation. The naturally hybridizing collared flycatcher and pied flycatcher are important avian speciation models that show pre- as well as postzygotic isolation. We sequenced and assembled the 1.1-Gb flycatcher genome, physically mapped the assembly to chromosomes using a low-density linkage map and re-sequenced population samples of each species. Here we show that the genomic landscape of species differentiation is highly heterogeneous with approximately 50 'divergence islands' showing up to 50-fold higher sequence divergence than the genomic background. These non-randomly distributed islands, with between one and three regions of elevated divergence per chromosome irrespective of chromosome size, are characterized by reduced levels of nucleotide diversity, skewed allele-frequency spectra, elevated levels of linkage disequilibrium and reduced proportions of shared polymorphisms in both species, indicative of parallel episodes of selection. Proximity of divergence peaks to genomic regions resistant to sequence assembly, potentially including centromeres and telomeres, indicate that complex repeat structures may drive species divergence. A much higher background level of species divergence of the Z chromosome, and a lower proportion of shared polymorphisms, indicate that sex chromosomes and autosomes are at different stages of speciation. This study provides a roadmap to the emerging field of speciation genomics.

617 citations

Book ChapterDOI
TL;DR: It seems possible that the interaction between parasitic infection, nutrition and reproductive effort can be an important mechanism in the ultimate shaping of life-history variation in avian populations.
Abstract: Reproductive effort can have profound effects on subsequent performance. Field experiments on the collared flycatcher (Ficedula albicollis) have demonstrated a number of trade-offs between life-history traits at different ages. The mechanism by which reproductive effort is mediated into future reproductive performance remains obscure. Anti-parasite adaptations such as cell-mediated immunity may probably also be costly. Hence the possibility exists of a trade-off between reproductive effort and the ability to resist parasitic infection. Serological tests on unmanipulated collared flycatchers show that pre-breeding nutritional status correlates positively with reproductive success and negatively with susceptibility to parasitism (viruses, bacteria and protozoan parasites). Both immune response and several indicators of infectious disease correlate negatively with reproductive success. Similar relations are found between secondary sexual characters and infection parameters. For brood-size-manipulated birds there was a significant interaction between experimentally increased reproductive effort and parasitic infection rate with regard to both current and future fecundity. It seems possible that the interaction between parasitic infection, nutrition and reproductive effort can be an important mechanism in the ultimate shaping of life-history variation in avian populations.

405 citations

Journal ArticleDOI
TL;DR: It is concluded that the heterogeneous landscape of differentiation in Ficedula flycatchers evolves mainly as the result of background selection and selective sweeps in genomic regions of low recombination, and the necessity of incorporating linked selection as a null model to identify genome regions involved in adaptation and speciation is emphasized.
Abstract: Speciation is a continuous process during which genetic changes gradually accumulate in the genomes of diverging species. Recent studies have documented highly heterogeneous differentiation landscapes, with distinct regions of elevated differentiation ("differentiation islands") widespread across genomes. However, it remains unclear which processes drive the evolution of differentiation islands; how the differentiation landscape evolves as speciation advances; and ultimately, how differentiation islands are related to speciation. Here, we addressed these questions based on population genetic analyses of 200 resequenced genomes from 10 populations of four Ficedula flycatcher sister species. We show that a heterogeneous differentiation landscape starts emerging among populations within species, and differentiation islands evolve recurrently in the very same genomic regions among independent lineages. Contrary to expectations from models that interpret differentiation islands as genomic regions involved in reproductive isolation that are shielded from gene flow, patterns of sequence divergence (d(xy) and relative node depth) do not support a major role of gene flow in the evolution of the differentiation landscape in these species. Instead, as predicted by models of linked selection, genome-wide variation in diversity and differentiation can be explained by variation in recombination rate and the density of targets for selection. We thus conclude that the heterogeneous landscape of differentiation in Ficedula flycatchers evolves mainly as the result of background selection and selective sweeps in genomic regions of low recombination. Our results emphasize the necessity of incorporating linked selection as a null model to identify genome regions involved in adaptation and speciation.

381 citations

Journal ArticleDOI
TL;DR: It is generally believed that success in male-male competition genuinely reflects high quality and that female preference for dominant males should therefore be widespread, but recent studies suggest that male dominance is not always attractive and that it does not necessarily predict superior parental quality, better genes or other forms of benefit to females.
Abstract: It is generally believed that success in male-male competition genuinely reflects high quality and that female preference for dominant males should therefore be widespread. However, recent studies ...

367 citations


Cited by
More filters
Journal Article
Fumio Tajima1
30 Oct 1989-Genomics
TL;DR: It is suggested that the natural selection against large insertion/deletion is so weak that a large amount of variation is maintained in a population.

11,521 citations

Journal Article
TL;DR: For the next few weeks the course is going to be exploring a field that’s actually older than classical population genetics, although the approach it’ll be taking to it involves the use of population genetic machinery.
Abstract: So far in this course we have dealt entirely with the evolution of characters that are controlled by simple Mendelian inheritance at a single locus. There are notes on the course website about gametic disequilibrium and how allele frequencies change at two loci simultaneously, but we didn’t discuss them. In every example we’ve considered we’ve imagined that we could understand something about evolution by examining the evolution of a single gene. That’s the domain of classical population genetics. For the next few weeks we’re going to be exploring a field that’s actually older than classical population genetics, although the approach we’ll be taking to it involves the use of population genetic machinery. If you know a little about the history of evolutionary biology, you may know that after the rediscovery of Mendel’s work in 1900 there was a heated debate between the “biometricians” (e.g., Galton and Pearson) and the “Mendelians” (e.g., de Vries, Correns, Bateson, and Morgan). Biometricians asserted that the really important variation in evolution didn’t follow Mendelian rules. Height, weight, skin color, and similar traits seemed to

9,847 citations

01 Jan 2016
TL;DR: The modern applied statistics with s is universally compatible with any devices to read, and is available in the digital library an online access to it is set as public so you can download it instantly.
Abstract: Thank you very much for downloading modern applied statistics with s. As you may know, people have search hundreds times for their favorite readings like this modern applied statistics with s, but end up in harmful downloads. Rather than reading a good book with a cup of coffee in the afternoon, instead they cope with some harmful virus inside their laptop. modern applied statistics with s is available in our digital library an online access to it is set as public so you can download it instantly. Our digital library saves in multiple countries, allowing you to get the most less latency time to download any of our books like this one. Kindly say, the modern applied statistics with s is universally compatible with any devices to read.

5,249 citations

Book ChapterDOI
31 Jan 1963

2,885 citations