scispace - formally typeset
Search or ask a question
Author

Anna-Stiina Heiskanen

Other affiliations: University of Helsinki
Bio: Anna-Stiina Heiskanen is an academic researcher from Finnish Environment Institute. The author has contributed to research in topics: Marine Strategy Framework Directive & Phytoplankton. The author has an hindex of 33, co-authored 63 publications receiving 4323 citations. Previous affiliations of Anna-Stiina Heiskanen include University of Helsinki.


Papers
More filters
Journal ArticleDOI
TL;DR: The successes and problems encountered with implementation of the WFD over the past 10 years are reviewed and recommendations to further improve the implementation process are provided.

817 citations

Journal ArticleDOI
TL;DR: It is emphasized that both Directives are frameworks on which many other directives are linked but that they need to be fully and seamlessly integrated to give a land to open sea system of assessment and management.

433 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a review of work carried out by the eutrophication task group, and report their main findings to the scientific community, focusing on integrated approaches that account for physico-chemical and biological components.
Abstract: In 2009, following approval of the European Marine Strategy Framework Directive (MSFD, 2008/56/EC), the European Commission (EC) created task groups to develop guidance for eleven quality descriptors that form the basis for evaluating ecosystem function. The objective was to provide European countries with practical guidelines for implementing the MSFD, and to produce a Commission Decision that encapsulated key points of the work in a legal framework. This paper presents a review of work carried out by the eutrophication task group, and reports our main findings to the scientific community. On the basis of an operational, management-oriented definition, we discuss the main methodologies that could be used for coastal and marine eutrophication assessment. Emphasis is placed on integrated approaches that account for physico–chemical and biological components, and combine both pelagic and benthic symptoms of eutrophication, in keeping with the holistic nature of the MSFD. We highlight general features that any marine eutrophication model should possess, rather than making specific recommendations. European seas range from highly eutrophic systems such as the Baltic to nutrient-poor environments such as the Aegean Sea. From a physical perspective, marine waters range from high energy environments of the north east Atlantic to the permanent vertical stratification of the Black Sea. This review aimed to encapsulate that variability, recognizing that meaningful guidance should be flexible enough to accommodate the widely differing characteristics of European seas, and that this information is potentially relevant in marine ecosystems worldwide. Given the spatial extent of the MSFD, innovative approaches are required to allow meaningful monitoring and assessment. Consequently, substantial logistic and financial challenges will drive research in areas such as remote sensing of harmful algal blooms, in situ sensor development, and mathematical models. Our review takes into account related legislation, and in particular the EU Water Framework Directive (WFD – 2000/60/EC), which deals with river basins, including estuaries and a narrow coastal strip, in order to examine these issues within the framework of integrated coastal zone management.

393 citations

Journal ArticleDOI
TL;DR: The MSFD implementation needs to be less complex, can be based largely on existing data and can be centred on the activities of the Regional Seas Conventions, and recommend a combination of existing quantitative targets and expert judgement.

263 citations

Journal ArticleDOI
TL;DR: Five existing methods that address the needs of monitoring and assessment of marine ecosystems are reviewed, highlighting their main characteristics and analyzing their commonalities and differences.
Abstract: Traditional and emerging human activities are increasingly putting pressures on marine ecosystems and impacting their ability to sustain ecological and human communities. To evaluate the health status of marine ecosystems we need a science-based, integrated Ecosystem Approach, that incorporates knowledge of ecosystem function and services provided that can be used to track how management decisions change the health of marine ecosystems. Although many methods have been developed to assess the status of single components of the ecosystem, few exist for assessing multiple ecosystem components in a holistic way. To undertake such an integrative assessment, it is necessary to understand the response of marine systems to human pressures. Hence, innovative monitoring is needed to obtain data to determine the health of large marine areas, and in an holistic way. Here we review five existing methods that address both of these needs (monitoring and assessment): the Ecosystem Health Assessment Tool; a method for the Marine Strategy Framework Directive in the Bay of Biscay; the Ocean Health Index; the Marine Biodiversity Assessment Tool; and the Nested Environmental status Assessment Tool. We have highlighted their main characteristics and analyzing their commonalities and differences, in terms of: use of the Ecosystem Approach; inclusion of multiple components in the assessment; use of reference conditions; use of integrative assessments; use of a range of values to capture the status; weighting ecosystem components when integrating; determine the uncertainty; ensure spatial and temporal comparability; use of robust monitoring approaches; and address pressures and impacts. Ultimately, for any ecosystem assessment to be effective it needs to be: transparent and repeatable and, in order to inform marine management, the results should be easy to communicate to wide audiences, including scientists, managers and policymakers.

217 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A review of the relationship between eutrophication, climate change and cyanobacterial blooms in freshwater, estuarine, and marine ecosystems can be found in this paper.

1,675 citations

Journal ArticleDOI
TL;DR: The evidence linking metal accumulation, cellular toxicity, and the generation of ROS in aquatic environments is reviewed, with a focus on algae.
Abstract: Heavy metals, depending on their oxidation states, can be highly reactive and, as a consequence, toxic to most organisms. They are produced by an expanding variety of anthropogenic sources suggesting an increasingly important role for this form of pollution. The toxic effect of heavy metals appears to be related to production of reactive oxygen species (ROS) and the resulting unbalanced cellular redox status. Algae respond to heavy metals by induction of several antioxidants, including diverse enzymes such as superoxide dismutase, catalase, glutathione peroxidase and ascorbate peroxidase, and the synthesis of low molecular weight compounds such as carotenoids and glutathione. At high, or acute, levels of metal pollutants, damage to algal cells occurs because ROS levels exceed the capacity of the cell to cope. At lower, or chronic, levels algae accumulate heavy metals and can pass them on to organisms of other trophic levels such as mollusks, crustaceans, and fishes. We review here the evidence linking metal accumulation, cellular toxicity, and the generation of ROS in aquatic environments.

985 citations

Journal ArticleDOI
TL;DR: The essential components of trait-based approaches to phytoplankton ecology are summarized and mathematical techniques for integrating traits into measures of growth and fitness and predicting how community structure varies along environmental gradients are described.
Abstract: Trait-based approaches are increasingly used in ecology. Phytoplankton communities, with a rich history as model systems in community ecology, are ideally suited for applying and further developing these concepts. Here we summarize the essential components of trait-based approaches and review their historical and potential application to illuminating phytoplankton community ecology. Major ecological axes relevant to phytoplankton include light and nutrient acquisition and use, natural enemy interactions, morphological variation, temperature sensitivity, and modes of reproduction. Tradeoffs between these traits play key roles in determining community structure. Freshwater and marine environments may select for a different suite of traits owing to their different physical and chemical properties. We describe mathematical techniques for integrating traits into measures of growth and fitness and predicting how community structure varies along environmental gradients. Finally, we outline challenges and future directions for the application of trait-based approaches to phytoplankton ecology.

977 citations

Journal ArticleDOI
TL;DR: The successes and problems encountered with implementation of the WFD over the past 10 years are reviewed and recommendations to further improve the implementation process are provided.

817 citations

Journal ArticleDOI
TL;DR: In this article, the authors presented the most up-to-date information about the physical environment of the Kongsfjord system and identified important gaps in knowledge, focusing on steep physical gradients along the main fjord axis, as well as seasonal environmental changes.
Abstract: Kongsfjorden-Krossfjorden and the adjacent West Spitsbergen Shelf meet at the common mouth of the two fjord arms. This paper presents our most up-to-date information about the physical environment of this fjord system and identifies important gaps in knowledge. Particular attention is given to the steep physical gradients along the main fjord axis, as well as to seasonal environmental changes. Physical processes on different scales control the large-scale circulation and small-scale (irreversible) mixing of water and its constituents. It is shown that, in addition to the tide, run-off (glacier ablation, snowmelt, summer rainfall and ice calving) and local winds are the main driving forces acting on the upper water masses in the fjord system. The tide is dominated by the semi-diurnal component and the freshwater supply shows a marked seasonal variation pattern and also varies interannually. The wind conditions are characterized by prevailing katabatic winds, which at times are strengthened by the geostrophic wind field over Svalbard. Rotational dynamics have a considerable influence on the circulation patterns within the fjord system and give rise to a strong interaction between the fjord arms. Such dynamics are also the main reason why variations in the shelf water density field, caused by remote forces (tide and coastal winds), propagate as a Kelvin wave into the fjord system. This exchange affects mainly the intermediate and deep water, which is also affected by vertical convection processes driven by cooling of the surface and brine release during ice formation in the inner reaches of the fjord arms. Further aspects covered by this paper include the geological and geomorphological characteristics of the Kongsfjorden area, climate and meteorology, the influence of glaciers, freshwater supply, sea ice conditions, sedimentation processes as well as underwater radiation conditions. The fjord system is assumed to be vulnerable to possible climate changes, and thus is very suitable as a site for the demonstration and investigation of phenomena related to climate change.

781 citations