scispace - formally typeset
Search or ask a question
Author

Anne-Clémence Vion

Bio: Anne-Clémence Vion is an academic researcher from Max Delbrück Center for Molecular Medicine. The author has contributed to research in topics: Endothelial stem cell & Autophagy. The author has an hindex of 19, co-authored 31 publications receiving 2403 citations. Previous affiliations of Anne-Clémence Vion include London Research Institute & French Institute of Health and Medical Research.

Papers
More filters
Journal ArticleDOI
TL;DR: Extracellular vesicles play an active role in inflammatory diseases, including atherosclerosis and angiogenesis, and the molecular interactions regulating these effects involve specific receptor activation, proteolytic enzymes, reactive oxygen species, or delivery of genetic information to target cells.
Abstract: Cell–cell communication has proven to be even more complex than previously thought since the discovery that extracellular vesicles serve as containers of biological information on various pathophysiological settings. Extracellular vesicles are classified into exosomes, microvesicles/microparticles, or apoptotic bodies, originating from different subcellular compartments. The cellular machinery controlling their formation and composition, as well as the mechanisms regulating their extracellular release, remain unfortunately much unknown. Extracellular vesicles have been found in plasma, urine, saliva, and inflammatory tissues. Their biomarker potential has raised significant interest in the cardiovascular field because the vesicle composition and microRNA content are specific signatures of cellular activation and injury. More than simply cell dust, extracellular vesicles are capable of transferring biological information to neighboring cells and play an active role in inflammatory diseases, including atherosclerosis and angiogenesis. The molecular interactions regulating these effects involve specific receptor activation, proteolytic enzymes, reactive oxygen species, or delivery of genetic information to target cells. Unraveling their mechanisms of action will likely open new therapeutic avenues.

346 citations

Journal ArticleDOI
TL;DR: Upregulation of miR-92a by oxLDL in atheroprone areas promotes endothelial activation and the development of atherosclerotic lesions, and miR -92a antagomir seems as a new atheroprotective therapeutic strategy.
Abstract: Rationale for Study:MicroRNAs (miRNAs) are small noncoding RNAs that regulate protein expression at post-transcriptional level. We hypothesized that a specific pool of endothelial miRNAs could be selectively regulated by flow conditions and inflammatory signals, and as such be involved in the development of atherosclerosis. Objective:To identify miRNAs, called atheromiRs, which are selectively regulated by shear stress and oxidized low-density lipoproteins (oxLDL), and to determine their role in atherogenesis. Methods and Results:Large-scale miRNA profiling in HUVECs identified miR-92a as an atheromiR candidate, whose expression is preferentially upregulated by the combination of low shear stress (SS) and atherogenic oxLDL. Ex vivo analysis of atheroprone and atheroprotected areas of mouse arteries and human atherosclerotic plaques demonstrated the preferential expression of miR-92a in atheroprone low SS regions. In Ldlr−/− mice, miR-92a expression was markedly enhanced by hypercholesterolemia, in particu...

342 citations

Journal ArticleDOI
TL;DR: By normalizing tumor vessel structure and function and increasing perfusion, CQ reduced hypoxia, cancer cell invasion, and metastasis, while improving chemotherapy delivery and response, supporting the use of CQ for anticancer treatment.

341 citations

Journal ArticleDOI
TL;DR: High levels of MPs circulate in the blood of patients with atherothrombotic diseases, where they could serve as a useful biomarker of vascular injury and a potential predictor of cardiovascular mortality and major adverse cardiovascular events.
Abstract: Membrane-shed submicron microparticles (MPs) are released after cell activation or apoptosis. High levels of MPs circulate in the blood of patients with atherothrombotic diseases, where they could serve as a useful biomarker of vascular injury and a potential predictor of cardiovascular mortality and major adverse cardiovascular events. Atherosclerotic lesions also accumulate large numbers of MPs of leukocyte, smooth muscle cell, endothelial, and erythrocyte origin. A large body of evidence supports the role of MPs at different steps of atherosclerosis development, progression, and complications. Circulating MPs impair the atheroprotective function of the vascular endothelium, at least partly, by decreased nitric oxide synthesis. Plaque MPs favor local inflammation by augmenting the expression of adhesion molecule, such as intercellular adhesion molecule -1 at the surface of endothelial cell, and monocyte recruitment within the lesion. In addition, plaque MPs stimulate angiogenesis, a key event in the transition from stable to unstable lesions. MPs also may promote local cell apoptosis, leading to the release and accumulation of new MPs, and thus creating a vicious circle. Furthermore, highly thrombogenic plaque MPs could increase thrombus formation at the time of rupture, together with circulating MPs released in this context by activated platelets and leukocytes. Finally, MPs also could participate in repairing the consequences of arterial occlusion and tissue ischemia by promoting postischemic neovascularization.

328 citations

Journal ArticleDOI
TL;DR: It is demonstrated that MPs isolated from human atherosclerotic plaques transfer ICAM-1 to endothelial cells to recruit inflammatory cells and suggest that plaque MPs promote atherosclerosis plaque progression.
Abstract: Rationale and Objective: Membrane-shed submicron microparticles (MPs) released following cell activation or apoptosis accumulate in atherosclerotic plaques, where they stimulate endothelial proliferation and neovessel formation. The aim of the study was to assess whether or not MPs isolated from human atherosclerotic plaques contribute to increased endothelial adhesion molecules expression and monocyte recruitment. Methods and Results: Human umbilical vein and coronary artery endothelial cells were exposed to MPs isolated from endarterectomy specimens (n=62) and characterized by externalized phosphatidylserine. Endothelial exposure to plaque, but not circulating, MPs increased ICAM-1 levels in a concentration-dependant manner (3.4-fold increase) without affecting ICAM-1 mRNA levels. Plaque MPs harbored ICAM-1 and transferred this adhesion molecule to endothelial cell membrane in a phosphatidylserine-dependent manner. MP-borne ICAM-1 was functionally integrated into cell membrane as demonstrated by the increased ERK1/2 phosphorylation following ICAM-1 ligation. Plaque MPs stimulated endothelial monocyte adhesion both in culture and in isolated perfused mouse carotid. This effect was also observed under flow condition and was prevented by anti–LFA-1 and anti–ICAM-1 neutralizing antibodies. MPs isolated from symptomatic plaques were more potent in stimulating monocyte adhesion than MPs from asymptomatic patients. Plaque MPs did not affect the release of interleukin-6, interleukin-8, or MCP-1, nor the expression of VCAM-1 and E-selectin. Conclusions: These results demonstrate that MPs isolated from human atherosclerotic plaques transfer ICAM-1 to endothelial cells to recruit inflammatory cells and suggest that plaque MPs promote atherosclerotic plaque progression.

234 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review traces the evolution of the concept of endothelial cell dysfunction, focusing on recent insights into the cellular and molecular mechanisms that underlie its pivotal roles in atherosclerotic lesion initiation and progression; explores its relationship to classic, as well as more recently defined, clinical risk factors for atherosclerosis.
Abstract: Dysfunction of the endothelial lining of lesion-prone areas of the arterial vasculature is an important contributor to the pathobiology of atherosclerotic cardiovascular disease. Endothelial cell dysfunction, in its broadest sense, encompasses a constellation of various nonadaptive alterations in functional phenotype, which have important implications for the regulation of hemostasis and thrombosis, local vascular tone and redox balance, and the orchestration of acute and chronic inflammatory reactions within the arterial wall. In this review, we trace the evolution of the concept of endothelial cell dysfunction, focusing on recent insights into the cellular and molecular mechanisms that underlie its pivotal roles in atherosclerotic lesion initiation and progression; explore its relationship to classic, as well as more recently defined, clinical risk factors for atherosclerotic cardiovascular disease; consider current approaches to the clinical assessment of endothelial cell dysfunction; and outline some promising new directions for its early detection and treatment.

1,811 citations

Journal ArticleDOI
TL;DR: A way forward is suggested for the effective targeting of autophagy by understanding the context-dependent roles of autophile and by capitalizing on modern approaches to clinical trial design.
Abstract: Autophagy is a mechanism by which cellular material is delivered to lysosomes for degradation, leading to the basal turnover of cell components and providing energy and macromolecular precursors. Autophagy has opposing, context-dependent roles in cancer, and interventions to both stimulate and inhibit autophagy have been proposed as cancer therapies. This has led to the therapeutic targeting of autophagy in cancer to be sometimes viewed as controversial. In this Review, we suggest a way forwards for the effective targeting of autophagy by understanding the context-dependent roles of autophagy and by capitalizing on modern approaches to clinical trial design.

1,606 citations

Book ChapterDOI
TL;DR: It is apparent that a combination of molecular and cellular approaches targeting multiple pathologic processes to limit the extent of I/R injury must be adopted to enhance resistance to cell death and increase regenerative capacity in order to effect long-lasting repair of ischemic tissues.
Abstract: Disorders characterized by ischemia/reperfusion (I/R), such as myocardial infarction, stroke, and peripheral vascular disease, continue to be among the most frequent causes of debilitating disease and death. Tissue injury and/or death occur as a result of the initial ischemic insult, which is determined primarily by the magnitude and duration of the interruption in the blood supply, and then subsequent damage induced by reperfusion. During prolonged ischemia, ATP levels and intracellular pH decrease as a result of anaerobic metabolism and lactate accumulation. As a consequence, ATPase-dependent ion transport mechanisms become dysfunctional, contributing to increased intracellular and mitochondrial calcium levels (calcium overload), cell swelling and rupture, and cell death by necrotic, necroptotic, apoptotic, and autophagic mechanisms. Although oxygen levels are restored upon reperfusion, a surge in the generation of reactive oxygen species occurs and proinflammatory neutrophils infiltrate ischemic tissues to exacerbate ischemic injury. The pathologic events induced by I/R orchestrate the opening of the mitochondrial permeability transition pore, which appears to represent a common end-effector of the pathologic events initiated by I/R. The aim of this treatise is to provide a comprehensive review of the mechanisms underlying the development of I/R injury, from which it should be apparent that a combination of molecular and cellular approaches targeting multiple pathologic processes to limit the extent of I/R injury must be adopted to enhance resistance to cell death and increase regenerative capacity in order to effect long-lasting repair of ischemic tissues.

1,565 citations

Journal ArticleDOI
TL;DR: Evidence is accumulating that vesicles are cargo containers used by eukaryotic cells to exchange biomolecules as transmembrane receptors and genetic information, and they have a myriad of potential clinical applications, ranging from biomarkers to anticancer therapy.
Abstract: Both eukaryotic and prokaryotic cells release small, phospholipid-enclosed vesicles into their environment. Why do cells release vesicles? Initial studies showed that eukaryotic vesicles are used to remove obsolete cellular molecules. Although this release of vesicles is beneficial to the cell, the vesicles can also be a danger to their environment, for instance in blood, where vesicles can provide a surface supporting coagulation. Evidence is accumulating that vesicles are cargo containers used by eukaryotic cells to exchange biomolecules as transmembrane receptors and genetic information. Because also bacteria communicate to each other via extracellular vesicles, the intercellular communication via extracellular cargo carriers seems to be conserved throughout evolution, and therefore vesicles are likely to be a highly efficient, robust, and economic manner of exchanging information between cells. Furthermore, vesicles protect cells from accumulation of waste or drugs, they contribute to physiology and pathology, and they have a myriad of potential clinical applications, ranging from biomarkers to anticancer therapy. Because vesicles may pass the blood-brain barrier, they can perhaps even be considered naturally occurring liposomes. Unfortunately, pathways of vesicle release and vesicles themselves are also being used by tumors and infectious diseases to facilitate spreading, and to escape from immune surveillance. In this review, the different types, nomenclature, functions, and clinical relevance of vesicles will be discussed.

1,421 citations

Journal ArticleDOI
TL;DR: There is now compelling evidence that a full understanding of VSMC behavior in Atherosclerosis is critical to identify therapeutic targets to both prevent and treat atherosclerosis.
Abstract: The historical view of vascular smooth muscle cells (VSMCs) in atherosclerosis is that aberrant proliferation of VSMCs promotes plaque formation, but that VSMCs in advanced plaques are entirely beneficial, for example preventing rupture of the fibrous cap. However, this view has been based on ideas that there is a homogenous population of VSMCs within the plaque, that can be identified separate from other plaque cells (particularly macrophages) using standard VSMC and macrophage immunohistochemical markers. More recent genetic lineage tracing studies have shown that VSMC phenotypic switching results in less-differentiated forms that lack VSMC markers including macrophage-like cells, and this switching directly promotes atherosclerosis. In addition, VSMC proliferation may be beneficial throughout atherogenesis, and not just in advanced lesions, whereas VSMC apoptosis, cell senescence, and VSMC-derived macrophage-like cells may promote inflammation. We review the effect of embryological origin on VSMC behavior in atherosclerosis, the role, regulation and consequences of phenotypic switching, the evidence for different origins of VSMCs, and the role of individual processes that VSMCs undergo in atherosclerosis in regard to plaque formation and the structure of advanced lesions. We think there is now compelling evidence that a full understanding of VSMC behavior in atherosclerosis is critical to identify therapeutic targets to both prevent and treat atherosclerosis.

1,389 citations