scispace - formally typeset
Search or ask a question
Author

Anne Galinier

Bio: Anne Galinier is an academic researcher from Paul Sabatier University. The author has contributed to research in topics: Catabolite repression & Bacillus subtilis. The author has an hindex of 42, co-authored 95 publications receiving 5222 citations. Previous affiliations of Anne Galinier include University of Lyon & Centre national de la recherche scientifique.


Papers
More filters
Journal ArticleDOI
TL;DR: The study demonstrates that, in tissues, oxidative phosphorylation capacity is highly variable and diverse, as determined by different combinations of 1) the mitochondrial content, 2) the amount of respiratory chain complexes, and 3) their intrinsic activity.
Abstract: To investigate the physiological diversity in the regulation and control of mitochondrial oxidative phosphorylation, we determined the composition and functional features of the respiratory chain i...

268 citations

Journal ArticleDOI
TL;DR: The results suggest that CCR of certain catabolic operons requires, in addition to CcpA, ATP-dependent phosphorylation of Crh, and HPr at Ser-46, as well as the discovery of a new B. subtilis gene encoding a HPr-like protein, Crh (for catabolite repression HPr).
Abstract: Carbon catabolite repression (CCR) of several Bacillus subtilis catabolic genes is mediated by ATP-dependent phosphorylation of histidine-containing protein (HPr), a phosphocarrier protein of the phosphoenolpyruvate (PEP): sugar phosphotransferase system. In this study, we report the discovery of a new B. subtilis gene encoding a HPr-like protein, Crh (for catabolite repression HPr), composed of 85 amino acids. Crh exhibits 45% sequence identity with HPr, but the active site His-15 of HPr is replaced with a glutamine in Crh. Crh is therefore not phosphorylated by PEP and enzyme I, but is phosphorylated by ATP and the HPr kinase in the presence of fructose-1,6-bisphosphate. We determined Ser-46 as the site of phosphorylation in Crh by carrying out mass spectrometry with peptides obtained by tryptic digestion or CNBr cleavage. In a B. subtilis ptsH1 mutant strain, synthesis of β-xylosidase, inositol dehydrogenase, and levanase was only partially relieved from CCR. Additional disruption of the crh gene caused almost complete relief from CCR. In a ptsH1 crh1 mutant, producing HPr and Crh in which Ser-46 is replaced with a nonphosphorylatable alanyl residue, expression of β-xylosidase was also completely relieved from glucose repression. These results suggest that CCR of certain catabolic operons requires, in addition to CcpA, ATP-dependent phosphorylation of Crh, and HPr at Ser-46.

244 citations

Journal ArticleDOI
TL;DR: Cytofluorometric analysis reveals the presence of significant levels of lymphocytes in the stroma‐vascular fraction of white adipose tissues, supporting the notion that adipose tissue may elaborate immunological mechanisms to regulate its functions which might be altered in obesity.

239 citations

Journal ArticleDOI
TL;DR: A molecular mechanism underlying catabolite repression in B. subtilis mediated by CcpA and P‐ser‐HPr is proposed and specific protection of the gnt CRE against DNase I digestion is confirmed.
Abstract: Catabolite repression of various Bacillus subtilis catabolic operons which carry a cis-acting catabolite-responsive element (CRE), such as the gnt operon, is mediated by CcpA, a protein belonging to the GalR-Lacl family of bacterial transcriptional repressors/activators, and the seryl-phosphorylated form of HPr, a phosphocarrier protein of the phosphoenolpyruvate:sugar phosphotransferase system. Footprinting experiments revealed that the purified CcpA protein interacted with P-ser-HPr to cause specific protection of the gnt CRE against DNase I digestion. The specific recognition of the gnt CRE was confirmed by the results of footprinting experiments using mutant gnt CREs carrying one of the following base substitutions within the CRE consensus sequence: G to T at position +149 or C to T at position +154 (+1 is the gnt transcription initiation nucleotide). The two mutant CREs causing a partial relief from catabolite repression were not protected by the CcpA/P-ser-HPr complex in footprinting experiments. Based on these and previous findings, we propose a molecular mechanism underlying catabolite repression in B. subtilis mediated by CcpA and P-ser-HPr.

220 citations

Journal ArticleDOI
25 Apr 2014-Diabetes
TL;DR: It is demonstrated that lactate, an important metabolic intermediate, induces browning of murine white adipose cells with expression of functional UCP1, and that the lactate effect on Ucp1 is mediated by intracellular redox modifications as a result of lactate transport through monocarboxylate transporters.
Abstract: The presence of brown adipose tissue (BAT) in human adults opens attractive perspectives to treat metabolic disorders. Indeed, BAT dissipates energy as heat via uncoupling protein (UCP)1. Brown adipocytes are located in specific deposits or can emerge among white fat through the so-called browning process. Although numerous inducers have been shown to drive this process, no study has investigated whether it could be controlled by specific metabolites. Here, we show that lactate, an important metabolic intermediate, induces browning of murine white adipose cells with expression of functional UCP1. Lactate-induced browning also occurs in human cells and in vivo. Lactate controls Ucp1 expression independently of hypoxia-inducible factor-1α and PPARα pathways but requires active PPARγ signaling. We demonstrate that the lactate effect on Ucp1 is mediated by intracellular redox modifications as a result of lactate transport through monocarboxylate transporters. Further, the ketone body β-hydroxybutyrate, another metabolite that impacts redox state, is also a strong browning inducer. Because this redox-dependent increase in Ucp1 expression promotes an oxidative phenotype with mitochondria, browning appears as an adaptive mechanism to alleviate redox pressure. Our findings open new perspectives for the control of adipose tissue browning and its physiological relevance.

210 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Emerging evidence suggests that ROS regulate diverse physiological parameters ranging from the response to growth factor stimulation to the generation of the inflammatory response, and that dysregulated ROS signaling may contribute to a host of human diseases.
Abstract: Although historically viewed as purely harmful, recent evidence suggests that reactive oxygen species (ROS) function as important physiological regulators of intracellular signaling pathways. The specific effects of ROS are modulated in large part through the covalent modification of specific cysteine residues found within redox-sensitive target proteins. Oxidation of these specific and reactive cysteine residues in turn can lead to the reversible modification of enzymatic activity. Emerging evidence suggests that ROS regulate diverse physiological parameters ranging from the response to growth factor stimulation to the generation of the inflammatory response, and that dysregulated ROS signaling may contribute to a host of human diseases.

1,897 citations

Journal ArticleDOI
TL;DR: Observations suggest that harnessing the anti-inflammatory properties of Treg cells to inhibit elements of the metabolic syndrome may have therapeutic potential.
Abstract: Obesity is accompanied by chronic, low-grade inflammation of adipose tissue, which promotes insulin resistance and type-2 diabetes. These findings raise the question of how fat inflammation can escape the powerful armamentarium of cells and molecules normally responsible for guarding against a runaway immune response. CD4(+) Foxp3(+) T regulatory (T(reg)) cells with a unique phenotype were highly enriched in the abdominal fat of normal mice, but their numbers were strikingly and specifically reduced at this site in insulin-resistant models of obesity. Loss-of-function and gain-of-function experiments revealed that these T(reg) cells influenced the inflammatory state of adipose tissue and, thus, insulin resistance. Cytokines differentially synthesized by fat-resident regulatory and conventional T cells directly affected the synthesis of inflammatory mediators and glucose uptake by cultured adipocytes. These observations suggest that harnessing the anti-inflammatory properties of T(reg) cells to inhibit elements of the metabolic syndrome may have therapeutic potential.

1,823 citations

Journal ArticleDOI
TL;DR: This review focuses on macroautophagy, briefly describing the discovery of this process in mammalian cells, discussing the current views concerning the donor membrane that forms the phagophore, and characterizing the autophagy machinery including the available structural information.
Abstract: Autophagy is a primarily degradative pathway that takes place in all eukaryotic cells. It is used for recycling cytoplasm to generate macromolecular building blocks and energy under stress conditions, to remove superfluous and damaged organelles to adapt to changing nutrient conditions and to maintain cellular homeostasis. In addition, autophagy plays a critical role in cytoprotection by preventing the accumulation of toxic proteins and through its action in various aspects of immunity including the elimination of invasive microbes and its participation in antigen presentation. The most prevalent form of autophagy is macroautophagy, and during this process, the cell forms a double-membrane sequestering compartment termed the phagophore, which matures into an autophagosome. Following delivery to the vacuole or lysosome, the cargo is degraded and the resulting macromolecules are released back into the cytosol for reuse. The past two decades have resulted in a tremendous increase with regard to the molecular studies of autophagy being carried out in yeast and other eukaryotes. Part of the surge in interest in this topic is due to the connection of autophagy with a wide range of human pathophysiologies including cancer, myopathies, diabetes and neurodegenerative disease. However, there are still many aspects of autophagy that remain unclear, including the process of phagophore formation, the regulatory mechanisms that control its induction and the function of most of the autophagy-related proteins. In this review, we focus on macroautophagy, briefly describing the discovery of this process in mammalian cells, discussing the current views concerning the donor membrane that forms the phagophore, and characterizing the autophagy machinery including the available structural information.

1,568 citations

Journal ArticleDOI
TL;DR: The most recent findings on the different mechanisms that have evolved to allow bacteria to use carbon sources in a hierarchical manner are discussed.
Abstract: Using the process of carbon catabolite repression (CCR), bacteria control gene expression and protein activity to preferentially metabolize the carbon sources that are most easily accessible and allow fastest growth. Recent findings have provided new insight into the mechanisms that different bacteria use to control CCR. Most bacteria can selectively use substrates from a mixture of different carbon sources. The presence of preferred carbon sources prevents the expression, and often also the activity, of catabolic systems that enable the use of secondary substrates. This regulation, called carbon catabolite repression (CCR), can be achieved by different regulatory mechanisms, including transcription activation and repression and control of translation by an RNA-binding protein, in different bacteria. Moreover, CCR regulates the expression of virulence factors in many pathogenic bacteria. In this Review, we discuss the most recent findings on the different mechanisms that have evolved to allow bacteria to use carbon sources in a hierarchical manner.

1,416 citations

Journal ArticleDOI
TL;DR: The known protein phosphorylation-related regulatory functions of the PTS are summarized, which shows that the PTS regulation network not only controls carbohydrate uptake and metabolism but also interferes with the utilization of nitrogen and phosphorus and the virulence of certain pathogens.
Abstract: The phosphoenolpyruvate(PEP):carbohydrate phosphotransferase system (PTS) is found only in bacteria, where it catalyzes the transport and phosphorylation of numerous monosaccharides, disaccharides, amino sugars, polyols, and other sugar derivatives. To carry out its catalytic function in sugar transport and phosphorylation, the PTS uses PEP as an energy source and phosphoryl donor. The phosphoryl group of PEP is usually transferred via four distinct proteins (domains) to the transported sugar bound to the respective membrane component(s) (EIIC and EIID) of the PTS. The organization of the PTS as a four-step phosphoryl transfer system, in which all P derivatives exhibit similar energy (phosphorylation occurs at histidyl or cysteyl residues), is surprising, as a single protein (or domain) coupling energy transfer and sugar phosphorylation would be sufficient for PTS function. A possible explanation for the complexity of the PTS was provided by the discovery that the PTS also carries out numerous regulatory functions. Depending on their phosphorylation state, the four proteins (domains) forming the PTS phosphorylation cascade (EI, HPr, EIIA, and EIIB) can phosphorylate or interact with numerous non-PTS proteins and thereby regulate their activity. In addition, in certain bacteria, one of the PTS components (HPr) is phosphorylated by ATP at a seryl residue, which increases the complexity of PTS-mediated regulation. In this review, we try to summarize the known protein phosphorylation-related regulatory functions of the PTS. As we shall see, the PTS regulation network not only controls carbohydrate uptake and metabolism but also interferes with the utilization of nitrogen and phosphorus and the virulence of certain pathogens.

1,245 citations