scispace - formally typeset
Search or ask a question
Author

Anne Jouvet

Bio: Anne Jouvet is an academic researcher from University of Lyon. The author has contributed to research in topics: Pineocytoma & Medulloblastoma. The author has an hindex of 47, co-authored 152 publications receiving 20878 citations. Previous affiliations of Anne Jouvet include Claude Bernard University Lyon 1 & French Institute of Health and Medical Research.


Papers
More filters
Journal ArticleDOI
TL;DR: The fourth edition of the World Health Organization (WHO) classification of tumours of the central nervous system, published in 2007, lists several new entities, including angiocentric glioma, papillary glioneuronal tumour, rosette-forming glioneurs tumour of the fourth ventricle, Papillary tumourof the pineal region, pituicytoma and spindle cell oncocytoma of the adenohypophysis.
Abstract: The fourth edition of the World Health Organization (WHO) classification of tumours of the central nervous system, published in 2007, lists several new entities, including angiocentric glioma, papillary glioneuronal tumour, rosette-forming glioneuronal tumour of the fourth ventricle, papillary tumour of the pineal region, pituicytoma and spindle cell oncocytoma of the adenohypophysis. Histological variants were added if there was evidence of a different age distribution, location, genetic profile or clinical behaviour; these included pilomyxoid astrocytoma, anaplastic medulloblastoma and medulloblastoma with extensive nodularity. The WHO grading scheme and the sections on genetic profiles were updated and the rhabdoid tumour predisposition syndrome was added to the list of familial tumour syndromes typically involving the nervous system. As in the previous, 2000 edition of the WHO ‘Blue Book’, the classification is accompanied by a concise commentary on clinico-pathological characteristics of each tumour type. The 2007 WHO classification is based on the consensus of an international Working Group of 25 pathologists and geneticists, as well as contributions from more than 70 international experts overall, and is presented as the standard for the definition of brain tumours to the clinical oncology and cancer research communities world-wide.

13,134 citations

Journal ArticleDOI
David Capper1, David Capper2, David Capper3, David T.W. Jones2  +168 moreInstitutions (54)
22 Mar 2018-Nature
TL;DR: This work presents a comprehensive approach for the DNA methylation-based classification of central nervous system tumours across all entities and age groups, and shows that the availability of this method may have a substantial impact on diagnostic precision compared to standard methods.
Abstract: Accurate pathological diagnosis is crucial for optimal management of patients with cancer. For the approximately 100 known tumour types of the central nervous system, standardization of the diagnostic process has been shown to be particularly challenging-with substantial inter-observer variability in the histopathological diagnosis of many tumour types. Here we present a comprehensive approach for the DNA methylation-based classification of central nervous system tumours across all entities and age groups, and demonstrate its application in a routine diagnostic setting. We show that the availability of this method may have a substantial impact on diagnostic precision compared to standard methods, resulting in a change of diagnosis in up to 12% of prospective cases. For broader accessibility, we have designed a free online classifier tool, the use of which does not require any additional onsite data processing. Our results provide a blueprint for the generation of machine-learning-based tumour classifiers across other cancer entities, with the potential to fundamentally transform tumour pathology.

1,620 citations

Journal ArticleDOI
Florence M.G. Cavalli1, Marc Remke2, Marc Remke1, Marc Remke3, Ladislav Rampášek1, John Peacock1, David Shih1, Betty Luu1, Livia Garzia1, Jonathon Torchia1, Carolina Nor1, A. Sorana Morrissy1, Sameer Agnihotri4, Yuan Yao Thompson1, Claudia M. Kuzan-Fischer1, Hamza Farooq1, Keren Isaev1, Keren Isaev5, Craig Daniels1, Byung Kyu Cho6, Seung-Ki Kim6, Kyu-Chang Wang6, Ji Yeoun Lee6, Wiesława Grajkowska7, Marta Perek-Polnik7, Alexandre Vasiljevic, Cécile Faure-Conter, Anne Jouvet8, Caterina Giannini9, Amulya A. Nageswara Rao9, Kay Ka Wai Li10, Ho Keung Ng10, Charles G. Eberhart11, Ian F. Pollack4, Ronald L. Hamilton4, G. Yancey Gillespie12, James M. Olson13, James M. Olson14, Sarah Leary13, William A. Weiss15, Boleslaw Lach16, Boleslaw Lach17, Lola B. Chambless18, Reid C. Thompson18, Michael K. Cooper18, Rajeev Vibhakar19, Peter Hauser20, Marie Lise C. van Veelen21, Johan M. Kros21, Pim J. French21, Young Shin Ra22, Toshihiro Kumabe23, Enrique López-Aguilar24, Karel Zitterbart25, Jaroslav Sterba25, Gaetano Finocchiaro, Maura Massimino, Erwin G. Van Meir26, Satoru Osuka26, Tomoko Shofuda, Almos Klekner27, Massimo Zollo28, Jeffrey R. Leonard29, Joshua B. Rubin29, Nada Jabado30, Steffen Albrecht30, Steffen Albrecht31, Jaume Mora, Timothy E. Van Meter32, Shin Jung33, Andrew S. Moore34, Andrew R. Hallahan34, Jennifer A. Chan35, Daniela Pretti da Cunha Tirapelli36, Carlos Gilberto Carlotti36, Maryam Fouladi37, José Pimentel, Claudia C. Faria, Ali G. Saad38, Luca Massimi39, Linda M. Liau40, Helen Wheeler41, Hideo Nakamura42, Samer K. Elbabaa43, Mario Perezpeña-Diazconti, Fernando Chico Ponce de León, Shenandoah Robinson44, Michal Zapotocky1, Alvaro Lassaletta1, Annie Huang1, Cynthia Hawkins1, Uri Tabori1, Eric Bouffet1, Ute Bartels1, Peter B. Dirks1, James T. Rutka1, Gary D. Bader1, Jüri Reimand5, Jüri Reimand1, Anna Goldenberg1, Vijay Ramaswamy1, Michael D. Taylor1 
TL;DR: Similarity network fusion (SNF) applied to genome-wide DNA methylation and gene expression data across 763 primary samples identifies very homogeneous clusters of patients, supporting the presence of medulloblastoma subtypes.

737 citations

Journal ArticleDOI
Dominik Sturm1, Dominik Sturm2, Brent A. Orr3, Umut H. Toprak2, Volker Hovestadt2, David T.W. Jones2, David Capper2, David Capper1, Martin Sill2, Ivo Buchhalter2, Paul A. Northcott2, Irina Leis1, Marina Ryzhova, Christian Koelsche1, Christian Koelsche2, Elke Pfaff2, Elke Pfaff1, Sariah Allen3, Gnanaprakash Balasubramanian2, Barbara C. Worst2, Barbara C. Worst1, Kristian W. Pajtler2, Sebastian Brabetz2, Pascal Johann2, Pascal Johann1, Felix Sahm1, Felix Sahm2, Jüri Reimand4, Jüri Reimand5, Alan Mackay6, Diana Carvalho6, Marc Remke5, Joanna J. Phillips7, Arie Perry7, Cynthia Cowdrey7, Rachid Drissi8, Maryam Fouladi8, Felice Giangaspero9, Maria Łastowska10, Wiesława Grajkowska10, Wolfram Scheurlen11, Torsten Pietsch12, Christian Hagel13, Johannes Gojo14, Daniela Lötsch14, Walter Berger14, Irene Slavc14, Christine Haberler14, Anne Jouvet15, Stefan Holm16, Silvia Hofer, Marco Prinz17, Catherine Keohane18, Iris Fried19, Christian Mawrin20, David Scheie21, Bret C. Mobley22, Matthew Schniederjan, Mariarita Santi23, Anna Maria Buccoliero11, Sonika Dahiya24, Christof M. Kramm25, André O. von Bueren25, Katja von Hoff13, Stefan Rutkowski13, Christel Herold-Mende1, Michael C. Frühwald26, Till Milde2, Till Milde1, Martin Hasselblatt27, Pieter Wesseling28, Pieter Wesseling29, Jochen Rößler30, Ulrich Schüller31, Martin Ebinger, Jens Schittenhelm32, Stephan Frank33, Rainer Grobholz, Istvan Vajtai, Volkmar Hans, Reinhard Schneppenheim13, Karel Zitterbart34, V. Peter Collins35, Eleonora Aronica36, Pascale Varlet, Stéphanie Puget37, Christelle Dufour38, Jacques Grill38, Dominique Figarella-Branger39, Marietta Wolter40, Martin U. Schuhmann32, Tarek Shalaby11, Michael A. Grotzer11, Timothy E. Van Meter41, Camelia M. Monoranu42, Jörg Felsberg40, Guido Reifenberger40, Matija Snuderl43, Lynn Ann Forrester43, Jan Koster36, Rogier Versteeg36, Richard Volckmann36, Peter van Sluis36, Stephan Wolf2, Tom Mikkelsen44, Amar Gajjar3, Kenneth Aldape45, Andrew S. Moore46, Michael D. Taylor5, Chris Jones6, Nada Jabado47, Matthias A. Karajannis43, Roland Eils, Matthias Schlesner2, Peter Lichter2, Andreas von Deimling2, Andreas von Deimling1, Stefan M. Pfister2, Stefan M. Pfister1, David W. Ellison3, Andrey Korshunov2, Andrey Korshunov1, Marcel Kool2 
25 Feb 2016-Cell
TL;DR: It is demonstrated that a significant proportion of institutionally diagnosed CNS-PNETs display molecular profiles indistinguishable from those of various other well-defined CNS tumor entities, facilitating diagnosis and appropriate therapy for patients with these tumors.

648 citations


Cited by
More filters
Book
29 Sep 2017
TL;DR: Thank you very much for reading who classification of tumours of haematopoietic and lymphoid tissues, and maybe you have knowledge that, people have look hundreds of times for their chosen readings like this, but end up in malicious downloads.
Abstract: WHO CLASSIFICATION OF TUMOURS OF HAEMATOPOIETIC AND LYMPHOID TISSUES , WHO CLASSIFICATION OF TUMOURS OF HAEMATOPOIETIC AND LYMPHOID TISSUES , کتابخانه مرکزی دانشگاه علوم پزشکی تهران

13,835 citations

Journal ArticleDOI
TL;DR: The fourth edition of the World Health Organization (WHO) classification of tumours of the central nervous system, published in 2007, lists several new entities, including angiocentric glioma, papillary glioneuronal tumour, rosette-forming glioneurs tumour of the fourth ventricle, Papillary tumourof the pineal region, pituicytoma and spindle cell oncocytoma of the adenohypophysis.
Abstract: The fourth edition of the World Health Organization (WHO) classification of tumours of the central nervous system, published in 2007, lists several new entities, including angiocentric glioma, papillary glioneuronal tumour, rosette-forming glioneuronal tumour of the fourth ventricle, papillary tumour of the pineal region, pituicytoma and spindle cell oncocytoma of the adenohypophysis. Histological variants were added if there was evidence of a different age distribution, location, genetic profile or clinical behaviour; these included pilomyxoid astrocytoma, anaplastic medulloblastoma and medulloblastoma with extensive nodularity. The WHO grading scheme and the sections on genetic profiles were updated and the rhabdoid tumour predisposition syndrome was added to the list of familial tumour syndromes typically involving the nervous system. As in the previous, 2000 edition of the WHO ‘Blue Book’, the classification is accompanied by a concise commentary on clinico-pathological characteristics of each tumour type. The 2007 WHO classification is based on the consensus of an international Working Group of 25 pathologists and geneticists, as well as contributions from more than 70 international experts overall, and is presented as the standard for the definition of brain tumours to the clinical oncology and cancer research communities world-wide.

13,134 citations

Journal ArticleDOI
TL;DR: The 2016 World Health Organization Classification of Tumors of the Central Nervous System is both a conceptual and practical advance over its 2007 predecessor and is hoped that it will facilitate clinical, experimental and epidemiological studies that will lead to improvements in the lives of patients with brain tumors.
Abstract: The 2016 World Health Organization Classification of Tumors of the Central Nervous System is both a conceptual and practical advance over its 2007 predecessor. For the first time, the WHO classification of CNS tumors uses molecular parameters in addition to histology to define many tumor entities, thus formulating a concept for how CNS tumor diagnoses should be structured in the molecular era. As such, the 2016 CNS WHO presents major restructuring of the diffuse gliomas, medulloblastomas and other embryonal tumors, and incorporates new entities that are defined by both histology and molecular features, including glioblastoma, IDH-wildtype and glioblastoma, IDH-mutant; diffuse midline glioma, H3 K27M-mutant; RELA fusion-positive ependymoma; medulloblastoma, WNT-activated and medulloblastoma, SHH-activated; and embryonal tumour with multilayered rosettes, C19MC-altered. The 2016 edition has added newly recognized neoplasms, and has deleted some entities, variants and patterns that no longer have diagnostic and/or biological relevance. Other notable changes include the addition of brain invasion as a criterion for atypical meningioma and the introduction of a soft tissue-type grading system for the now combined entity of solitary fibrous tumor / hemangiopericytoma-a departure from the manner by which other CNS tumors are graded. Overall, it is hoped that the 2016 CNS WHO will facilitate clinical, experimental and epidemiological studies that will lead to improvements in the lives of patients with brain tumors.

11,197 citations

Journal ArticleDOI
TL;DR: The Central Brain Tumor Registry of the United States (CBTRUS), in collaboration with the Centers for Disease Control and Prevention and National Cancer Institute, is the largest population-based registry focused exclusively on primary brain and other central nervous system (CNS) tumors in the US.
Abstract: The Central Brain Tumor Registry of the United States (CBTRUS), in collaboration with the Centers for Disease Control (CDC) and National Cancer Institute (NCI), is the largest population-based registry focused exclusively on primary brain and other central nervous system (CNS) tumors in the United States (US) and represents the entire US population. This report contains the most up-to-date population-based data on primary brain tumors (malignant and non-malignant) and supersedes all previous CBTRUS reports in terms of completeness and accuracy. All rates (incidence and mortality) are age-adjusted using the 2000 US standard population and presented per 100,000 population. The average annual age-adjusted incidence rate (AAAIR) of all malignant and non-malignant brain and other CNS tumors was 23.79 (Malignant AAAIR=7.08, non-Malignant AAAIR=16.71). This rate was higher in females compared to males (26.31 versus 21.09), Blacks compared to Whites (23.88 versus 23.83), and non-Hispanics compared to Hispanics (24.23 versus 21.48). The most commonly occurring malignant brain and other CNS tumor was glioblastoma (14.5% of all tumors), and the most common non-malignant tumor was meningioma (38.3% of all tumors). Glioblastoma was more common in males, and meningioma was more common in females. In children and adolescents (age 0-19 years), the incidence rate of all primary brain and other CNS tumors was 6.14. An estimated 83,830 new cases of malignant and non-malignant brain and other CNS tumors are expected to be diagnosed in the US in 2020 (24,970 malignant and 58,860 non-malignant). There were 81,246 deaths attributed to malignant brain and other CNS tumors between 2013 and 2017. This represents an average annual mortality rate of 4.42. The 5-year relative survival rate following diagnosis of a malignant brain and other CNS tumor was 23.5% and for a non-malignant brain and other CNS tumor was 82.4%.

9,802 citations

Journal ArticleDOI
26 Sep 2008-Science
TL;DR: Recurrent mutations in the active site of isocitrate dehydrogenase 1 (IDH1) occurred in a large fraction of young patients and in most patients with secondary GBMs and were associated with an increase in overall survival.
Abstract: Glioblastoma multiforme (GBM) is the most common and lethal type of brain cancer. To identify the genetic alterations in GBMs, we sequenced 20,661 protein coding genes, determined the presence of amplifications and deletions using high-density oligonucleotide arrays, and performed gene expression analyses using next-generation sequencing technologies in 22 human tumor samples. This comprehensive analysis led to the discovery of a variety of genes that were not known to be altered in GBMs. Most notably, we found recurrent mutations in the active site of isocitrate dehydrogenase 1 (IDH1) in 12% of GBM patients. Mutations in IDH1 occurred in a large fraction of young patients and in most patients with secondary GBMs and were associated with an increase in overall survival. These studies demonstrate the value of unbiased genomic analyses in the characterization of human brain cancer and identify a potentially useful genetic alteration for the classification and targeted therapy of GBMs.

5,250 citations