scispace - formally typeset
Search or ask a question
Author

Anne Laure Fanciullino

Bio: Anne Laure Fanciullino is an academic researcher from Institut national de la recherche agronomique. The author has contributed to research in topics: Carotenoid & Orange (colour). The author has an hindex of 14, co-authored 23 publications receiving 818 citations. Previous affiliations of Anne Laure Fanciullino include Centre de coopération internationale en recherche agronomique pour le développement & University of Lorraine.

Papers
More filters
Journal ArticleDOI
TL;DR: A comprehensive review of the results that have been obtained so far through purely agronomic approaches is provided and brings them into perspective by comparing them with the achievements of genetic approaches.
Abstract: Fruits and vegetables (FAVs) are an important part of the human diet and a major source of biologically active substances such as vitamins and secondary metabolites. The consumption of FAVs remains globally insufficient, so it should be encouraged, and it may be useful to propose to consumers FAVs with enhanced concentrations in vitamins and secondary metabolites. There are basically two ways to reach this target: the genetic approach or the environmental approach. This paper provides a comprehensive review of the results that have been obtained so far through purely agronomic approaches and brings them into perspective by comparing them with the achievements of genetic approaches. Although agronomic approaches offer very good perspectives, the existence of variability of responses suggests that the current understanding of the way regulatory and metabolic pathways are controlled needs to be increased. For this purpose, more in-depth study of the interactions existing between factors (light and temperatur...

196 citations

Journal ArticleDOI
TL;DR: The findings provide evidence that the general evolution of cultivated Citrus is the main factor of the organization of carotenoid diversity among citrus varieties, and lead to the proposed major biosynthetic steps involved in the differential carOTenoid accumulation.
Abstract: Citrus fruits are complex sources of carotenoids with more than 100 kinds of pigments reported in this genus. To understand the origin of the diversity of carotenoid compositions of citrus fruit, 25 genotypes that belong to the 8 cultivated Citrus species were analyzed. Juice extracts of mature fruit were analyzed by high-performance liquid chromatography using a C30 column. The 25 citrus genotypes presented different carotenoid profiles with 25 distinct compounds isolated. Statistical analyses revealed a strong impact of genotype on carotenoid compositions. Two kinds of classifications of genotypes were performed: on qualitative data and on quantitative data, respectively. The results showed that variability in carotenoid compositions was more interspecific than intraspecific. Two carotenoids, cis-violaxanthin and the beta-cryptoxanthin, strongly determined the classification on qualitative data, which was also in agreement with previous citrus variety classifications. These findings provide evidence that, as for other phenotypical traits, the general evolution of cultivated Citrus is the main factor of the organization of carotenoid diversity among citrus varieties. To the authors' knowledge this is the first study that links the diversity of carotenoid composition to the citrus genetic diversity. These results lead to the proposed major biosynthetic steps involved in the differential carotenoid accumulation. Possible regulation mechanisms are also discussed.

141 citations

Journal ArticleDOI
TL;DR: The idea that reactive oxygen species/redox status and sugars/carbon status can be considered as integrated factors that account for most effects of the major environmental factors influencing carotenoid biosynthesis is developed.
Abstract: Carotenoids play an important role in plant adaptation to fluctuating environments as well as in the human diet by contributing to the prevention of chronic diseases. Insights have been gained recently into the way individual factors, genetic, environmental or developmental, control the carotenoid biosynthetic pathway at the molecular level. The identification of the rate-limiting steps of carotenogenesis has paved the way for programmes of breeding, and metabolic engineering, aimed at increasing the concentration of carotenoids in different crop species. However, the complexity that arises from the interactions between the different factors as well as from the coordination between organs remains poorly understood. This review focuses on recent advances in carotenoid responses to environmental stimuli and discusses how the interactions between the modulation factors and between organs affect carotenoid build-up. We develop the idea that reactive oxygen species/redox status and sugars/carbon status can be considered as integrated factors that account for most effects of the major environmental factors influencing carotenoid biosynthesis. The discussion highlights the concept of carotenoids or carotenoid-derivatives as stress signals that may be involved in feedback controls. We propose a conceptual model of the effects of environmental and developmental factors on carotenoid build-up in fruits. This review presents an assessment of the current understanding of how the different environmental factors and their interactions influence carotenoid accumulation at the organ level. We develop the idea that environmental factors converge to modulate reactive oxygen species (ROS)/redox status (influenced by oxidative stress), and sugars/carbon status (which results from the balance between carbon gains and losses, and allocation between competing organs) and in this way regulate carotenoid accumulation. The discussion highlights the concept of carotenoids or carotenoidderivatives as stress signals that may be involved in feedback controls. We propose a conceptual model of the effects of environmental and developmental factors that accounts for the known roles played by ROS and sugars on carotenoid build-up in fruits.

108 citations

Journal ArticleDOI
TL;DR: Comparison of the allelic constitution of Ruby in different species and cultivars helps to clarify many of the taxonomic relationships in differentspecies of Citrus, confirms the derivation of commercial varieties during domestication, elucidates the relationships within the subgenus Papeda, and allows a new genetic classification of mandarins.
Abstract: Mandarin (Citrus reticulata), citron (Citrus medica), and pummelo (Citrus maxima) are important species of the genus Citrus and parents of the interspecific hybrids that constitute the most familiar commercial varieties of Citrus: sweet orange, sour orange, clementine, lemon, lime, and grapefruit. Citron produces anthocyanins in its young leaves and flowers, as do species in genera closely related to Citrus, but mandarins do not, and pummelo varieties that produce anthocyanins have not been reported. We investigated the activity of the Ruby gene, which encodes a MYB transcription factor controlling anthocyanin biosynthesis, in different accessions of a range of Citrus species and in domesticated cultivars. A white mutant of lemon lacks functional alleles of Ruby, demonstrating that Ruby plays an essential role in anthocyanin production in Citrus Almost all the natural variation in pigmentation by anthocyanins in Citrus species can be explained by differences in activity of the Ruby gene, caused by point mutations and deletions and insertions of transposable elements. Comparison of the allelic constitution of Ruby in different species and cultivars also helps to clarify many of the taxonomic relationships in different species of Citrus, confirms the derivation of commercial varieties during domestication, elucidates the relationships within the subgenus Papeda, and allows a new genetic classification of mandarins.

79 citations

Journal ArticleDOI
TL;DR: A general pattern of transcript change in juice sacs of citrus fruit is revealed, characterized by an apparent coordination of Dxs and Psy expression and a general increase in mRNA levels of carotenoid biosynthetic genes.
Abstract: The contribution of carotenoid composition to the color range of the fruit juice sacs of four orange varieties (Citrus sinensis) differing in flesh color, namely, Shamouti (normal orange color), Sanguinelli ("blood cultivar" purple color), Cara Cara navel (pink-reddish), and Huang pi Chen (yellowish color), was investigated. To this end, qualitative and quantitative analyses of carotenoid contents were first performed by high-performance liquid chromatography (HPLC) using a C30 column and a photodiode array detector in February, at a late developmental fruit stage. Concomitantly, transcript levels of Dxs, the gene controlling the first step of the MEP pathway, and six genes involved in beta,beta-xanthophyll biosynthesis (Psy, Pds, Zds, Lcy-b, Hy-b, and Zep) were determined in August, November, and February. Transcript level measurement was carried out by real-time RT-PCR on total RNA from juice sacs. The four orange varieties displayed different carotenoid profiles. Shamouti and Sanguinelli oranges accumulated mainly beta,beta-xanthophylls as expected in typically colored oranges, whereas Cara Cara navel orange accumulated linear carotenes in addition to cis-violaxanthin. Huang pi Chen fruit flesh orange was characterized by a strong reduction of total carotenoid content. Whereas gene expression was relatively low and similar in August (before color break) in all four varieties, in November (during color break), Dxs, Zds, Hy-b, and Zep expression was higher in Cara Cara and Huang pi Chen oranges. The beta,beta-xanthophyll accumulation observed in February in Shamouti and Sanguinelli oranges was apparently related to the increase of transcript levels of all measured genes (i.e., Dxs, Psy, Pds, Zds, Hy-b, and Zep) except Lcy-b. At this time, however, transcript levels in Cara Cara were rather similar to those found in Sanguinelli, although both showed different carotenoid compositions. The Huang pi Chen phenotype correlated with lower expression of Dxs and Psy genes. These results revealed a general pattern of transcript change in juice sacs of citrus fruit, characterized by an apparent coordination of Dxs and Psy expression and a general increase in mRNA levels of carotenoid biosynthetic genes. These transcript changes correlated well with the beta,beta-xanthophyll accumulation, the normal carotenoid set, observed in Shamouti and Sanguinelli oranges and suggest that the preferential accumulation of linear carotenes in Cara Cara navel and the practical absence of carotenoids in Huang pi Chen oranges were not predominantly due to changes in regulation of carotenoid biosynthetic genes at the transcriptional level.

69 citations


Cited by
More filters
01 Dec 2010
TL;DR: In this article, the authors suggest a reduction in the global NPP of 0.55 petagrams of carbon, which would not only weaken the terrestrial carbon sink, but would also intensify future competition between food demand and biofuel production.
Abstract: Terrestrial net primary production (NPP) quantifies the amount of atmospheric carbon fixed by plants and accumulated as biomass. Previous studies have shown that climate constraints were relaxing with increasing temperature and solar radiation, allowing an upward trend in NPP from 1982 through 1999. The past decade (2000 to 2009) has been the warmest since instrumental measurements began, which could imply continued increases in NPP; however, our estimates suggest a reduction in the global NPP of 0.55 petagrams of carbon. Large-scale droughts have reduced regional NPP, and a drying trend in the Southern Hemisphere has decreased NPP in that area, counteracting the increased NPP over the Northern Hemisphere. A continued decline in NPP would not only weaken the terrestrial carbon sink, but it would also intensify future competition between food demand and proposed biofuel production.

1,780 citations

Journal ArticleDOI
TL;DR: In this paper, a dedicated effort to synthesize existing scientific knowledge across disciplines is underway and aims to provide a better understanding of the combined risks posed in the Mediterranean Basin, where fewer systematic observations schemes and impact models are based.
Abstract: Recent accelerated climate change has exacerbated existing environmental problems in the Mediterranean Basin that are caused by the combination of changes in land use, increasing pollution and declining biodiversity. For five broad and interconnected impact domains (water, ecosystems, food, health and security), current change and future scenarios consistently point to significant and increasing risks during the coming decades. Policies for the sustainable development of Mediterranean countries need to mitigate these risks and consider adaptation options, but currently lack adequate information — particularly for the most vulnerable southern Mediterranean societies, where fewer systematic observations schemes and impact models are based. A dedicated effort to synthesize existing scientific knowledge across disciplines is underway and aims to provide a better understanding of the combined risks posed.

699 citations

Journal ArticleDOI
TL;DR: The presence/absence and relative accumulation of certain metabolites along with gene expression data provides accurate markers (mQTL or MWAS) for tolerant crop selection in breeding programs.
Abstract: Metabolites reflect the integration of gene expression, protein interaction and other different regulatory processes and are therefore closer to the phenotype than mRNA transcripts or proteins alone. Amongst all –omics technologies, metabolomics is the most transversal and can be applied to different organisms with little or no modifications. It has been successfully applied to the study of molecular phenotypes of plants in response to abiotic stress in order to find particular patterns associated to stress tolerance. These studies have highlighted the essential involvement of primary metabolites: sugars, amino acids and Krebs cycle intermediates as direct markers of photosynthetic dysfunction as well as effectors of osmotic readjustment. On the contrary, secondary metabolites are more specific of genera and species and respond to particular stress conditions as antioxidants, Reactive Oxygen Species (ROS) scavengers, coenzymes, UV and excess radiation screen and also as regulatory molecules. In addition, the induction of secondary metabolites by several abiotic stress conditions could also be an effective mechanism of cross-protection against biotic threats, providing a link between abiotic and biotic stress responses. Moreover, the presence/absence and relative accumulation of certain metabolites along with gene expression data provides accurate markers (mQTL or MWAS) for tolerant crop selection in breeding programs.

452 citations

Journal ArticleDOI
TL;DR: The data demonstrate that Cd perturbs the DNA methylation status through the involvement of a specific methyltransferase, linked to nuclear chromatin reconfiguration likely to establish a new balance of expressed/repressed chromatin.
Abstract: In mammals, cadmium is widely considered as a non-genotoxic carcinogen acting through a methylation-dependent epigenetic mechanism. Here, the effects of Cd treatment on the DNA methylation patten are examined together with its effect on chromatin reconfiguration in Posidonia oceanica. DNA methylation level and pattern were analysed in actively growing organs, under short- (6 h) and long- (2 d or 4 d) term and low (10 mM) and high (50 mM) doses of Cd, through a Methylation-Sensitive Amplification Polymorphism technique and an immunocytological approach, respectively. The expression of one member of the CHROMOMETHYLASE (CMT) family, a DNA methyltransferase, was also assessed by qRT-PCR. Nuclear chromatin ultrastructure was investigated by transmission electron microscopy. Cd treatment induced a DNA hypermethylation, as well as an up-regulation of CMT, indicating that de novo methylation did indeed occur. Moreover, a high dose of Cd led to a progressive heterochromatinization of interphase nuclei and apoptotic figures were also observed after long-term treatment. The data demonstrate that Cd perturbs the DNA methylation status through the involvement of a specific methyltransferase. Such changes are linked to nuclear chromatin reconfiguration likely to establish a new balance of expressed/repressed chromatin. Overall, the data show an epigenetic basis to the mechanism underlying Cd toxicity in plants.

450 citations

Journal ArticleDOI
TL;DR: This review provides a comprehensive overview of the impact of various types of plastids on carotenoid biosynthesis and accumulation, and discusses recent advances in the understanding of the regulatory control ofCarotenogenesis and metabolic engineering ofcarotenoids in light ofplastid types in plants.

388 citations