scispace - formally typeset
Search or ask a question
Author

Anne M. Henstra

Bio: Anne M. Henstra is an academic researcher from University of Nottingham. The author has contributed to research in topics: Clostridium autoethanogenum & Carboxydothermus hydrogenoformans. The author has an hindex of 17, co-authored 24 publications receiving 1519 citations. Previous affiliations of Anne M. Henstra include Wageningen University and Research Centre.

Papers
More filters
Journal ArticleDOI
TL;DR: Syngas fermenting microorganisms possess advantageous characteristics for biofuel production and hold potential for future engineering efforts, although genetic tools for such engineering are currently unavailable.

491 citations

Journal ArticleDOI
TL;DR: It is demonstrated that AOR is critical to ethanol formation in acetogens and inactivation of AdhE led to consistently enhanced autotrophic ethanol production (up to 180%).

172 citations

Journal ArticleDOI
TL;DR: CO utilization by various anaerobic micro-organisms and their possible role in biotechnological processes, with a focus on hydrogen production and bio-desulfurization are reviewed.
Abstract: Recent advances in the field of microbial physiology demonstrate that carbon monoxide is a readily used substrate by a wide variety of anaerobic micro-organisms, and may be employed in novel biotec...

137 citations

Journal ArticleDOI
TL;DR: On the basis of phylogenetic and physiological features, it is suggested that strain CO-1-SRB(T) represents a novel species within the genus Desulfotomaculum, for which the name Desulfotomyaculum carboxydivorans is proposed.
Abstract: A moderately thermophilic, anaerobic, chemolithoheterotrophic, sulfate-reducing bacterium, strain CO-1-SRB(T), was isolated from sludge from an anaerobic bioreactor treating paper mill wastewater. Cells were Gram-positive, motile, spore-forming rods. The temperature range for growth was 30-68 degrees C, with an optimum at 55 degrees C. The NaCl concentration range for growth was 0-17 g l(-1); there was no change in growth rate until the NaCl concentration reached 8 g l(-1). The pH range for growth was 6.0-8.0, with an optimum of 6.8-7.2. The bacterium could grow with 100% CO in the gas phase. With sulfate, CO was converted to H(2) and CO(2) and part of the H(2) was used for sulfate reduction; without sulfate, CO was completely converted to H(2) and CO(2). With sulfate, strain CO-1-SRB(T) utilized H(2)/CO(2), pyruvate, glucose, fructose, maltose, lactate, serine, alanine, ethanol and glycerol. The strain fermented pyruvate, lactate, glucose and fructose. Yeast extract was necessary for growth. Sulfate, thiosulfate and sulfite were used as electron acceptors, whereas elemental sulfur and nitrate were not. A phylogenetic analysis of 16S rRNA gene sequences placed strain CO-1-SRB(T) in the genus Desulfotomaculum, closely resembling Desulfotomaculum nigrificans DSM 574(T) and Desulfotomaculum sp. RHT-3 (99 and 100% similarity, respectively). However, the latter strains were completely inhibited above 20 and 50% CO in the gas phase, respectively, and were unable to ferment CO, lactate or glucose in the absence of sulfate. DNA-DNA hybridization of strain CO-1-SRB(T) with D. nigrificans and Desulfotomaculum sp. RHT-3 showed 53 and 60% relatedness, respectively. On the basis of phylogenetic and physiological features, it is suggested that strain CO-1-SRB(T) represents a novel species within the genus Desulfotomaculum, for which the name Desulfotomaculum carboxydivorans is proposed. This is the first description of a sulfate-reducing micro-organism that is capable of growth under an atmosphere of pure CO with and without sulfate. The type strain is CO-1-SRB(T) (=DSM 14880(T)=VKM B-2319(T)).

112 citations

Journal ArticleDOI
TL;DR: Among known thermophilic carboxydotrophic anaerobes, hydrogenogens are most numerous, and based on available data they are most important in CO biotransformation in hot environments.

102 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Sulphate-reducing bacteria are anaerobic microorganisms that use sulphate as a terminal electron acceptor in, for example, the degradation of organic compounds, and are ubiquitous in anoxic habitats.
Abstract: Sulphate-reducing bacteria (SRB) are anaerobic microorganisms that use sulphate as a terminal electron acceptor in, for example, the degradation of organic compounds. They are ubiquitous in anoxic habitats, where they have an important role in both the sulphur and carbon cycles. SRB can cause a serious problem for industries, such as the offshore oil industry, because of the production of sulphide, which is highly reactive, corrosive and toxic. However, these organisms can also be beneficial by removing sulphate and heavy metals from waste streams. Although SRB have been studied for more than a century, it is only with the recent emergence of new molecular biological and genomic techniques that we have begun to obtain detailed information on their way of life.

1,809 citations

Journal ArticleDOI
TL;DR: In this article, various strategies for the valorisation of waste biomass to platform chemicals, and the underlying developments in chemical and biological catalysis which make this possible, are critically reviewed, and three possible routes for producing a bio-based equivalent of the large volume polymer, polyethylene terephthalate (PET) are delineated.

1,246 citations

Journal ArticleDOI
TL;DR: The transfer of hydrogen and formate between bacteria and archaea that helps to sustain growth in syntrophic methanogenic communities is reviewed and the process of reverse electron transfer is described, which is a key requirement in obligately syntrophic interactions.
Abstract: Interspecies electron transfer is a key process in methanogenic and sulphate-reducing environments. Bacteria and archaea that live in syntrophic communities take advantage of the metabolic abilities of their syntrophic partner to overcome energy barriers and break down compounds that they cannot digest by themselves. Here, we review the transfer of hydrogen and formate between bacteria and archaea that helps to sustain growth in syntrophic methanogenic communities. We also describe the process of reverse electron transfer, which is a key requirement in obligately syntrophic interactions. Anaerobic methane oxidation coupled to sulphate reduction is also carried out by syntrophic communities of bacteria and archaea but, as we discuss, the exact mechanism of this syntrophic interaction is not yet understood.

1,052 citations

Journal ArticleDOI
TL;DR: In this article, a metatranscriptomic analysis of methanogenic aggregates from a brewery wastewater digester, coupled with fluorescence in situ hybridization with specific 16S rRNA probes, revealed that Methanosaeta species were the most abundant and metabolically active methanogens.
Abstract: Anaerobic conversion of organic wastes and biomass to methane is an important bioenergy strategy, which depends on poorly understood mechanisms of interspecies electron transfer to methanogenic microorganisms. Metatranscriptomic analysis of methanogenic aggregates from a brewery wastewater digester, coupled with fluorescence in situ hybridization with specific 16S rRNA probes, revealed that Methanosaeta species were the most abundant and metabolically active methanogens. Methanogens known to reduce carbon dioxide with H2 or formate as the electron donor were rare. Although Methanosaeta have previously been thought to be restricted to acetate as a substrate for methane production, Methanosaeta in the aggregates had a complete complement of genes for the enzymes necessary for the reduction of carbon to methane, and transcript abundance for these genes was high. Furthermore, Geobacter species, the most abundant bacteria in the aggregates, highly expressed genes for ethanol metabolism and for extracellular electron transfer via electrically conductive pili, suggesting that Geobacter and Methanosaeta species were exchanging electrons via direct interspecies electron transfer (DIET). This possibility was further investigated in defined co-cultures of Geobacter metallireducens and Methanosaeta harundinacea which stoichiometrically converted ethanol to methane. Transcriptomic, radiotracer, and genetic analysis demonstrated that M. harundinacea accepted electrons via DIET for the reduction of carbon dioxide to methane. The discovery that Methanosaeta species, which are abundant in a wide diversity of methanogenic environments, are capable of DIET has important implications not only for the functioning of anaerobic digesters, but also for global methane production.

1,016 citations