scispace - formally typeset
Search or ask a question
Author

Anne Marie Di Guilmi

Bio: Anne Marie Di Guilmi is an academic researcher from University of Grenoble. The author has contributed to research in topics: Peptidoglycan & Penicillin binding proteins. The author has an hindex of 28, co-authored 41 publications receiving 1980 citations. Previous affiliations of Anne Marie Di Guilmi include French Alternative Energies and Atomic Energy Commission & Joseph Fourier University.

Papers
More filters
Journal ArticleDOI
TL;DR: Formation of metastable oligomers precedes membrane association and ring generation in the formation of the Pseudomonas translocon, a mechanism which may be similar for other pathogens that employ type III secretion systems.
Abstract: Pseudomonas aeruginosa is the agent of opportunistic infections in immunocompromised individuals and chronic respiratory illnesses in cystic fibrosis patients. Pseudomonas aeruginosa utilizes a type III secretion system for injection of toxins into the host cell cytoplasm through a channel on the target membrane (the 'translocon'). Here, we have functionally and structurally characterized PopB and PopD, membrane proteins implicated in the formation of the P.aeruginosa translocon. PopB and PopD form soluble complexes with their common chaperone, PcrH, either as stable heterodimers or as metastable heterooligomers. Only oligomeric forms are able to bind to and disrupt cholesterol-rich membranes, which occurs within a pH range of 5-7 in the case of PopB/PcrH, and only at acidic pH for PcrH-free PopD. Electron microscopy reveals that upon membrane association PopB and PopD form 80 A wide rings which encircle 40 A wide cavities. Thus, formation of metastable oligomers precedes membrane association and ring generation in the formation of the Pseudomonas translocon, a mechanism which may be similar for other pathogens that employ type III secretion systems.

160 citations

Journal ArticleDOI
TL;DR: It is shown by site-specific mutagenesis, mass spectrometry, and thermal shift assays that intradomain isopeptide bonds play key roles in stabilizing RrgA's stalk, which suggests common strategies for ECM recognition and immune evasion.

139 citations

Journal ArticleDOI
TL;DR: Functional and structural data provide new perspectives related to the physiological role of AdcAII in pneumococcus Zn homeostasis and a phylogenetic tree built from the sequence alignment of 68 proteins reveals a subgroup of members displaying an unusual genetic operon organisation.

113 citations

Journal ArticleDOI
TL;DR: The structure of PBP1b* complexed with beta-lactam antibiotics reveals that ligand recognition requires a conformational modification involving conserved elements within the cleft, and suggest how class A PBPs may become activated as novel peptidoglycan synthesis becomes necessary during the cell division process.
Abstract: Bacterial cell division is a complex, multimolecular process that requires biosynthesis of new peptidoglycan by penicillin-binding proteins (PBPs) during cell wall elongation and septum formation steps. Streptococcus pneumoniae has three bifunctional (class A) PBPs that catalyze both polymerization of glycan chains (glycosyltransfer) and cross-linking of pentapeptidic bridges (transpeptidation) during the peptidoglycan biosynthetic process. In addition to playing important roles in cell division, PBPs are also the targets for β-lactam antibiotics and thus play key roles in drug-resistance mechanisms. The crystal structure of a soluble form of pneumococcal PBP1b (PBP1b*) has been solved to 1.9 A, thus providing previously undescribed structural information regarding a class A PBP from any organism. PBP1b* is a three-domain molecule harboring a short peptide from the glycosyltransferase domain bound to an interdomain linker region, the transpeptidase domain, and a C-terminal region. The structure of PBP1b* complexed with β-lactam antibiotics reveals that ligand recognition requires a conformational modification involving conserved elements within the cleft. The open and closed structures of PBP1b* suggest how class A PBPs may become activated as novel peptidoglycan synthesis becomes necessary during the cell division process. In addition, this structure provides an initial framework for the understanding of the role of class A PBPs in the development of antibiotic resistance.

102 citations

Journal ArticleDOI
TL;DR: The results highlight a novel function for the plasminogen recruitment at the bacterial surface in facilitating adherence of pneumococci to endothelial and epithelial cells, while active plAsmin degrades intercellular junctions.
Abstract: The precise mechanisms by which Streptococcus pneumoniae overcomes epithelial and endothelial barriers to access underlying human tissues remain to be determined. The plasminogen system is highly important for the tissue barrier degradation which allows cell migration. Plasminogen is known to interact with pneumococci via enolase, glyceraldehyde-3-phosphate dehydrogenase, and choline-binding protein E. These observations prompted us to evaluate the role of this proteolytic system in the pneumococcal invasion process. We observed that coating of S. pneumoniae R6 strain with plasminogen or inactivated plasmin increased adherence to pulmonary epithelial A549 and vascular endothelial EaHy cells in vitro. This indicates that plasminogen-mediated adherence is independent of the protease activity and involves plasminogen binding to receptors on eukaryotic cell surfaces. Conversely, decreased adherence of bacterial cells coated with active plasmin was observed, indicating that the protease activity limits bacterial attachment on the cell surface. We were then interested in investigating the role of the proteolytic plasmin activity in the traversal of tissue barriers. We observed that adherence of plasmin-coated D39 (encapsulated) or R6 (unencapsulated) pneumococci induced sporadic disruptions of EaHy and A549 monolayer cell junctions. This was not observed when plasmin was inhibited by aprotinin. Endothelial junction disorganization may proceed by proteolysis of the cell junction components. This is supported by our observation of the in vitro cleavage by plasmin bound to pneumococci of recombinant vascular endothelial cadherin, the main component of endothelial adherens junctions. Finally, junction damage induced by plasmin may be related to tissue barrier traversal, as we measured an increase of S. pneumoniae transmigration across epithelial A549 and endothelial EaHy layers when active plasmin was present on the bacterial surface. Our results highlight a novel function for the plasminogen recruitment at the bacterial surface in facilitating adherence of pneumococci to endothelial and epithelial cells, while active plasmin degrades intercellular junctions. This process promotes migration of pneumococci through cell barriers by a pericellular route, a prerequisite for dissemination of S. pneumoniae in the host organism.

95 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This article gives a very brief overview of the antibiotic era, beginning from the discovery of first antibiotics until the present day situation, which is marred by the emergence of hard-to-treat multiple antibiotic-resistant infections.
Abstract: This article gives a very brief overview of the antibiotic era, beginning from the discovery of first antibiotics until the present day situation, which is marred by the emergence of hard-to-treat multiple antibiotic-resistant infections. The ways of responding to the antibiotic resistance challenges such as the development of novel strategies in the search for new antimicrobials, designing more effective preventive measures and, importantly, better understanding the ecology of antibiotics and antibiotic resistance are discussed. The expansion of conceptual frameworks based on recent developments in the field of antimicrobials, antibiotic resistance, and chemotherapy is also discussed.

1,132 citations

Journal ArticleDOI
TL;DR: The purpose of this review is to underscore and illustrate those scientific problems unique to the discovery and optimization of novel antibacterial agents that have adversely affected the output of the effort.
Abstract: Summary: The discovery of novel small-molecule antibacterial drugs has been stalled for many years. The purpose of this review is to underscore and illustrate those scientific problems unique to the discovery and optimization of novel antibacterial agents that have adversely affected the output of the effort. The major challenges fall into two areas: (i) proper target selection, particularly the necessity of pursuing molecular targets that are not prone to rapid resistance development, and (ii) improvement of chemical libraries to overcome limitations of diversity, especially that which is necessary to overcome barriers to bacterial entry and proclivity to be effluxed, especially in Gram-negative organisms. Failure to address these problems has led to a great deal of misdirected effort.

1,107 citations

Journal ArticleDOI
TL;DR: An overview of the content in PBPs of some bacteria is provided with an emphasis on comparing the biochemical properties of homologous PBPs (orthologues) belonging to different bacteria.
Abstract: Penicillin-binding proteins (PBPs) have been scrutinized for over 40 years. Recent structural information on PBPs together with the ongoing long-term biochemical experimental investigations, and results from more recent techniques such as protein localization by green fluorescent protein-fusion immunofluorescence or double-hybrid assay, have brought our understanding of the last stages of the peptidoglycan biosynthesis to an outstanding level that allows a broad outlook on the properties of these enzymes. Details are emerging regarding the interaction between the peptidoglycan-synthesizing PBPs and the peptidoglycan, their mesh net-like product that surrounds and protects bacteria. This review focuses on the detailed structure of PBPs and their implication in peptidoglycan synthesis, maturation and recycling. An overview of the content in PBPs of some bacteria is provided with an emphasis on comparing the biochemical properties of homologous PBPs (orthologues) belonging to different bacteria.

1,104 citations

Journal ArticleDOI
TL;DR: The principal structural components of the injectisome, from the base located in the bacterial cytosol to the tip of the needle protruding from the cell surface, have been investigated in detail.
Abstract: The type III secretion injectisome is a complex nanomachine that allows bacteria to deliver protein effectors across eukaryotic cellular membranes In recent years, significant progress has been made in our understanding of its structure, assembly and mode of operation The principal structural components of the injectisome, from the base located in the bacterial cytosol to the tip of the needle protruding from the cell surface, have been investigated in detail The structures of several constituent proteins were solved at the atomic level and important insights into the assembly process have been gained However, despite the ongoing concerted efforts of molecular and structural biologists, the role of many of the constituent components of this nanomachine remain unknown

1,067 citations

Journal ArticleDOI
TL;DR: This article will review the mechanisms of activation of alternative, classical, and lectin pathways, the formation of C3 and C5 convertases, the action of anaphylatoxins, and the membrane-attack-complex, and discuss the importance of structure–function relationships.
Abstract: Complement is a complex innate immune surveillance system, playing a key role in defense against pathogens and in host homeostasis. The complement system is initiated by conformational changes in recognition molecular complexes upon sensing danger signals. The subsequent cascade of enzymatic reactions is tightly regulated to assure that complement is activated only at specific locations requiring defense against pathogens, thus avoiding host tissue damage. Here we discuss the recent advances describing the molecular and structural basis of activation and regulation of the complement pathways and their implication on physiology and pathology. This article will review the mechanisms of activation of alternative, classical and lectin pathways, the formation of C3 and C5 convertases, the action of anaphylatoxins and the membrane attack complex. We will also discuss the importance of structure-function relationships using the example of atypical hemolytic uremic syndrome. Lastly we will discuss the development and benefits of therapies using complement inhibitors.

1,042 citations