scispace - formally typeset
Search or ask a question
Author

Anne März

Bio: Anne März is an academic researcher from University of Jena. The author has contributed to research in topics: Surface-enhanced Raman spectroscopy & Raman spectroscopy. The author has an hindex of 11, co-authored 18 publications receiving 1297 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The limit of sensitivity in SERS is introduced in the context of single-molecule spectroscopy and the calculation of the ‘real’ enhancement factor, which illustrates the broad applications of this powerful technique.
Abstract: Surface-enhanced Raman spectroscopy (SERS) combines molecular fingerprint specificity with potential single-molecule sensitivity. Therefore, the SERS technique is an attractive tool for sensing molecules in trace amounts within the field of chemical and biochemical analytics. Since SERS is an ongoing topic, which can be illustrated by the increased annual number of publications within the last few years, this review reflects the progress and trends in SERS research in approximately the last three years. The main reason why the SERS technique has not been established as a routine analytic technique, despite its high specificity and sensitivity, is due to the low reproducibility of the SERS signal. Thus, this review is dominated by the discussion of the various concepts for generating powerful, reproducible, SERS-active surfaces. Furthermore, the limit of sensitivity in SERS is introduced in the context of single-molecule spectroscopy and the calculation of the 'real' enhancement factor. In order to shed more light onto the underlying molecular processes of SERS, the theoretical description of SERS spectra is also a growing research field and will be summarized here. In addition, the recording of SERS spectra is affected by a number of parameters, such as laser power, integration time, and analyte concentration. To benefit from synergies, SERS is combined with other methods, such as scanning probe microscopy and microfluidics, which illustrates the broad applications of this powerful technique.

706 citations

Journal ArticleDOI
Angela Walter1, Anne März1, Wilm Schumacher1, Petra Rösch1, Jürgen Popp1 
TL;DR: It is demonstrated that the requirements can be fulfilled by measuring ultrasonic busted bacteria by means of microfluidic lab-on-a-chip based SERS and the applied sample preparation, high specificity and reproducibility of the spectra are achieved.
Abstract: The interest in a fast, high specific and reliable detection method for bacteria identification is increasing. We will show that the application of vibrational spectroscopy is feasible for the validation of bacteria in microfluidic devices. For this purpose, reproducible and specific spectral pattern as well as the establishment of large databases are essential for statistical analysis. Therefore, short recording times are beneficial concerning the time aspect of fast identification. We will demonstrate that the requirements can be fulfilled by measuring ultrasonic busted bacteria by means of microfluidic lab-on-a-chip based SERS. With the applied sample preparation, high specificity and reproducibility of the spectra are achieved. Taking advantage of the SERS enhancement, the spectral recording time is reduced to 1 s and a database of 11 200 spectra is established for a model system E. coli including nine different strains. The validation of the bacteria on strain level is achieved accomplishing SVM accuracies of 92%. Within this contribution the potential of our approach of bacterial identification for future application is discussed, focusing on the time-benefit and the combination with other microfluidic applications.

263 citations

Journal ArticleDOI
TL;DR: The problem of a poor batch-to-batch reproducibility of the needed nanoparticle solutions is solved with the implementation of an internal standard into the microfluidic device the influence of the properties of the colloid on the SERS activity can be compensated.
Abstract: In this contribution a new approach for quantitative measurements using surface-enhanced Raman spectroscopy (SERS) is presented. Combining the application of isotope-edited internal standard with the advantages of the liquid-liquid segmented-flow-based approach for flow-through SERS detection seems to be a promising means for quantitative SERS analysis. For the investigations discussed here a newly designed flow cell, tested for ideal mixing efficiency on the basis of grayscale-value measurements, is implemented. Measurements with the heteroaromatics nicotine and pyridine using their respective deuterated isotopomers as internal standards show that the integration of an isotopically labeled internal standard in the used liquid-liquid two-phase segmented flow leads to reproducible and comparable SERS spectra independent from the used colloid. With the implementation of an internal standard into the microfluidic device the influence of the properties of the colloid on the SERS activity can be compensated. Thus, the problem of a poor batch-to-batch reproducibility of the needed nanoparticle solutions is solved. To the best of our knowledge these are the first measurements combining the above mentioned concepts in order to correct for differences in the enhancement behaviour of the respective colloid.

99 citations

Journal ArticleDOI
Anne März1, Thomas Henkel, Dana Cialla1, Michael Schmitt1, Jürgen Popp1 
TL;DR: Besides the approach of using droplet-based microfluidic devices as a detection platform, the unique properties of flow-through systems for the formation of droplets are capitalized to produce SERS active substrates and to accomplish uniform sample preparation.
Abstract: This review outlines concepts and applications of droplet formation via flow-through microdevices in Raman and surface enhanced Raman spectroscopy (SERS) as well as the advantages of the approach. Even though the droplet-based flow-through technique is utilized in various fields, the review focuses on implementing droplet-based fluidic systems in Raman and SERS as these highly specific detection methods are of major interest in the field of analytics. With the combination of Raman or SERS with droplet-based fluidics, it is expected to achieve novel opportunities for analytics. Besides the approach of using droplet-based microfluidic devices as a detection platform, the unique properties of flow-through systems for the formation of droplets are capitalized to produce SERS active substrates and to accomplish uniform sample preparation. Within this contribution, previous reported applications on droplet-based flow-through Raman and SERS approaches and the additional benefit with regard to the importance in the field of analytics are considered.

72 citations

Journal ArticleDOI
TL;DR: In this paper, a review of surface-enhanced Raman spectroscopy (SERS) applications in bio-analytics is presented, which illustrates the broad application fields of SERS and TERS in bioanalytics and shows the great potential of these methods for biomedical diagnostics.
Abstract: Due to its fingerprint specificity and trace-level sensitivity, surface-enhanced Raman spectroscopy (SERS) is an attractive tool in bioanalytics. This review reflects the research in this highly interesting topic of the last 3–4 years. The detection of the SERS signature of biomolecules up to microorganisms and cells is introduced. Labeling using modified nanoparticles (SERS tags) is also introduced. In order to establish biomedical applications, SERS analysis is performed in complex matrices such as body fluids. Furthermore, the SERS technique is combined with other methods such as microfluidic devices for online monitoring and scanning probe microscopy (i.e. tip-enhanced Raman spectroscopy, TERS) to investigate nanoscaled features. The present review illustrates the broad application fields of SERS and TERS in bioanalytics and shows the great potential of these methods for biomedical diagnostics.

68 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Chemical applications of SERS cover a broad range of topics such as catalysis and spectroelectrochemistry, single-molecule detection, and (bio)analytical chemistry.
Abstract: Surface-enhanced Raman scattering (SERS) has become a mature vibrational spectroscopic technique during the last decades and the number of applications in the chemical, material, and in particular life sciences is rapidly increasing. This Review explains the basic theory of SERS in a brief tutorial and-based on original results from recent research-summarizes fundamental aspects necessary for understanding SERS and provides examples for the preparation of plasmonic nanostructures for SERS. Chemical applications of SERS are the centerpiece of this Review. They cover a broad range of topics such as catalysis and spectroelectrochemistry, single-molecule detection, and (bio)analytical chemistry.

1,817 citations

Journal ArticleDOI
28 Jan 2020-ACS Nano
TL;DR: Prominent authors from all over the world joined efforts to summarize the current state-of-the-art in understanding and using SERS, as well as to propose what can be expected in the near future, in terms of research, applications, and technological development.
Abstract: The discovery of the enhancement of Raman scattering by molecules adsorbed on nanostructured metal surfaces is a landmark in the history of spectroscopic and analytical techniques. Significant experimental and theoretical effort has been directed toward understanding the surface-enhanced Raman scattering (SERS) effect and demonstrating its potential in various types of ultrasensitive sensing applications in a wide variety of fields. In the 45 years since its discovery, SERS has blossomed into a rich area of research and technology, but additional efforts are still needed before it can be routinely used analytically and in commercial products. In this Review, prominent authors from around the world joined together to summarize the state of the art in understanding and using SERS and to predict what can be expected in the near future in terms of research, applications, and technological development. This Review is dedicated to SERS pioneer and our coauthor, the late Prof. Richard Van Duyne, whom we lost during the preparation of this article.

1,768 citations

Journal ArticleDOI
TL;DR: The purpose of this review is to convey the fundamentals of droplet microfluidics, a critical analysis on its current status and challenges, and opinions on its future development.
Abstract: Droplet microfluidics generates and manipulates discrete droplets through immiscible multiphase flows inside microchannels Due to its remarkable advantages, droplet microfluidics bears significant value in an extremely wide range of area In this review, we provide a comprehensive and in-depth insight into droplet microfluidics, covering fundamental research from microfluidic chip fabrication and droplet generation to the applications of droplets in bio(chemical) analysis and materials generation The purpose of this review is to convey the fundamentals of droplet microfluidics, a critical analysis on its current status and challenges, and opinions on its future development We believe this review will promote communications among biology, chemistry, physics, and materials science

990 citations

Journal ArticleDOI
TL;DR: The mechanisms by which optofluidics enhances bio/chemical analysis capabilities, including sensing and the precise control of biological micro/nanoparticles, are emphasized.
Abstract: Optofluidics - the synergistic integration of photonics and microfluidics - has recently emerged as a new analytical field that provides a number of unique characteristics for enhanced sensing performance and simplification of microsystems. In this review, we describe various optofluidic architectures developed in the past five years, emphasize the mechanisms by which optofluidics enhances bio/chemical analysis capabilities, including sensing and the precise control of biological micro/nanoparticles, and envision new research directions to which optofluidics leads.

797 citations