scispace - formally typeset
Search or ask a question
Author

Annick Lim

Bio: Annick Lim is an academic researcher from Pasteur Institute. The author has contributed to research in topics: T cell & Antigen. The author has an hindex of 50, co-authored 98 publications receiving 11742 citations. Previous affiliations of Annick Lim include French Institute of Health and Medical Research.


Papers
More filters
Journal ArticleDOI
17 Oct 2003-Science
TL;DR: Retrovirus vector insertion can trigger deregulated premalignant cell proliferation with unexpected frequency, most likely driven by retrovirus enhancer activity on the LMO2 gene promoter.
Abstract: We have previously shown correction of X-linked severe combined immunodeficiency [SCID-X1, also known as gamma chain (gamma(c)) deficiency] in 9 out of 10 patients by retrovirus-mediated gamma(c) gene transfer into autologous CD34 bone marrow cells. However, almost 3 years after gene therapy, uncontrolled exponential clonal proliferation of mature T cells (with gammadelta+ or alphabeta+ T cell receptors) has occurred in the two youngest patients. Both patients' clones showed retrovirus vector integration in proximity to the LMO2 proto-oncogene promoter, leading to aberrant transcription and expression of LMO2. Thus, retrovirus vector insertion can trigger deregulated premalignant cell proliferation with unexpected frequency, most likely driven by retrovirus enhancer activity on the LMO2 gene promoter.

3,514 citations

Journal ArticleDOI
TL;DR: These findings functionally specify a genetic network that controls growth in T cell progenitors and led to sustained remission in 3 of the 4 cases of T cell leukemia, but failed in the fourth.
Abstract: Previously, several individuals with X-linked SCID (SCID-X1) were treated by gene therapy to restore the missing IL-2 receptor gamma (IL2RG) gene to CD34+ BM precursor cells using gammaretroviral vectors. While 9 of 10 patients were successfully treated, 4 of the 9 developed T cell leukemia 31-68 months after gene therapy. In 2 of these cases, blast cells contained activating vector insertions near the LIM domain-only 2 (LMO2) proto-oncogene. Here, we report data on the 2 most recent adverse events, which occurred in patients 7 and 10. In patient 10, blast cells contained an integrated vector near LMO2 and a second integrated vector near the proto-oncogene BMI1. In patient 7, blast cells contained an integrated vector near a third proto-oncogene,CCND2. Additional genetic abnormalities in the patients' blast cells included chromosomal translocations, gain-of-function mutations activating NOTCH1, and copy number changes, including deletion of tumor suppressor gene CDKN2A, 6q interstitial losses, and SIL-TAL1 rearrangement. These findings functionally specify a genetic network that controls growth in T cell progenitors. Chemotherapy led to sustained remission in 3 of the 4 cases of T cell leukemia, but failed in the fourth. Successful chemotherapy was associated with restoration of polyclonal transduced T cell populations. As a result, the treated patients continued to benefit from therapeutic gene transfer.

1,667 citations

Journal ArticleDOI
TL;DR: After nearly 10 years of follow-up, gene therapy was shown to have corrected the immunodeficiency associated with SCID-X1 and may be an option for patients who do not have an HLA-identical donor for hematopoietic stem-cell transplantation and for whom the risks are deemed acceptable.
Abstract: Background The outcomes of gene therapy to correct congenital immunodeficiencies are unknown. We reviewed long-term outcomes after gene therapy in nine patients with X-linked severe combined immunodeficiency (SCID-X1), which is characterized by the absence of the cytokine receptor common γ chain. Methods The nine patients, who lacked an HLA-identical donor, underwent ex vivo retrovirus-mediated transfer of γ chain to autologous CD34+ bone marrow cells between 1999 and 2002. We assessed clinical events and immune function on long-term follow-up. Results Eight patients were alive after a median follow-up period of 9 years (range, 8 to 11). Gene therapy was initially successful at correcting immune dysfunction in eight of the nine patients. However, acute leukemia developed in four patients, and one died. Transduced T cells were detected for up to 10.7 years after gene therapy. Seven patients, including the three survivors of leukemia, had sustained immune reconstitution; three patients required immunoglobulin-replacement therapy. Sustained thymopoiesis was established by the persistent presence of naive T cells, even after chemotherapy in three patients. The T-cell−receptor repertoire was diverse in all patients. Transduced B cells were not detected. Correction of the immunodeficiency improved the patients’ health. Conclusions After nearly 10 years of follow-up, gene therapy was shown to have corrected the immunodeficiency associated with SCID-X1. Gene therapy may be an option for patients who do not have an HLA-identical donor for hematopoietic stem-cell transplantation and for whom the risks are deemed acceptable. This treatment is associated with a risk of acute leukemia. (Funded by INSERM and others.)

584 citations

Journal ArticleDOI
TL;DR: RT-PCR analysis showed that all genes, including seg and sei, belong to an operon, designated theEnterotoxin gene cluster (egc), identifying egc as a putative nursery of enterotoxin genes.
Abstract: The recently described staphylococcal enterotoxins (SE) G and I were originally identified in two separate strains of Staphylococcus aureus. We have previously shown that the corresponding genes seg and sei are present in S. aureus in tandem orientation, on a 3.2-kb DNA fragment (Jarraud, J. et al. 1999. J. Clin. Microbiol. 37:2446-2449). Sequence analysis of seg-sei intergenic DNA and flanking regions revealed three enterotoxin-like open reading frames related to seg and sei, designated sek, sel, and sem, and two pseudogenes, psi ent1 and psi ent2. RT-PCR analysis showed that all these genes, including seg and sei, belong to an operon, designated the enterotoxin gene cluster (egc). Recombinant SEG, SEI, SEK, SEL, and SEM showed superantigen activity, each with a specific V beta pattern. Distribution studies of genes encoding superantigens in clinical S. aureus isolates showed that most strains harbored such genes and in particular the enterotoxin gene cluster, whatever the disease they caused. Phylogenetic analysis of enterotoxin genes indicated that they all potentially derived from this cluster, identifying egc as a putative nursery of enterotoxin genes.

498 citations

Journal ArticleDOI
TL;DR: This modified γ-retrovirus vector was found to retain efficacy in the treatment of SCID-X1 and the long-term effect of this therapy on leukemogenesis remains unknown.
Abstract: BACKGROUND In previous clinical trials involving children with X-linked severe combined immunodeficiency (SCID-X1), a Moloney murine leukemia virus–based γ-retrovirus vector expressing interleukin-2 receptor γ-chain (γc) complementary DNA successfully restored immunity in most patients but resulted in vector-induced leukemia through enhancermediated mutagenesis in 25% of patients. We assessed the efficacy and safety of a self-inactivating retrovirus for the treatment of SCID-X1. METHODS We enrolled nine boys with SCID-X1 in parallel trials in Europe and the United States to evaluate treatment with a self-inactivating (SIN) γ-retrovirus vector containing deletions in viral enhancer sequences expressing γc (SIN-γc). RESULTS All patients received bone marrow–derived CD34+ cells transduced with the SIN-γc vector, without preparative conditioning. After 12.1 to 38.7 months of follow-up, eight of the nine children were still alive. One patient died from an overwhelming adenoviral infection before reconstitution with genetically modified T cells. Of the remaining eight patients, seven had recovery of peripheral-blood T cells that were functional and led to resolution of infections. The patients remained healthy thereafter. The kinetics of CD3+ T-cell recovery was not significantly different from that observed in previous trials. Assessment of insertion sites in peripheral blood from patients in the current trial as compared with those in previous trials revealed significantly less clustering of insertion sites within LMO2, MECOM, and other lymphoid proto-oncogenes in our patients. CONCLUSIONS This modified γ-retrovirus vector was found to retain efficacy in the treatment of SCID-X1. The long-term effect of this therapy on leukemogenesis remains unknown. (Funded by the National Institutes of Health and others; ClinicalTrials.gov numbers, NCT01410019, NCT01175239, and NCT01129544.)

336 citations


Cited by
More filters
Journal ArticleDOI
17 Oct 2003-Science
TL;DR: Retrovirus vector insertion can trigger deregulated premalignant cell proliferation with unexpected frequency, most likely driven by retrovirus enhancer activity on the LMO2 gene promoter.
Abstract: We have previously shown correction of X-linked severe combined immunodeficiency [SCID-X1, also known as gamma chain (gamma(c)) deficiency] in 9 out of 10 patients by retrovirus-mediated gamma(c) gene transfer into autologous CD34 bone marrow cells. However, almost 3 years after gene therapy, uncontrolled exponential clonal proliferation of mature T cells (with gammadelta+ or alphabeta+ T cell receptors) has occurred in the two youngest patients. Both patients' clones showed retrovirus vector integration in proximity to the LMO2 proto-oncogene promoter, leading to aberrant transcription and expression of LMO2. Thus, retrovirus vector insertion can trigger deregulated premalignant cell proliferation with unexpected frequency, most likely driven by retrovirus enhancer activity on the LMO2 gene promoter.

3,514 citations

Journal ArticleDOI
TL;DR: This review addresses the heterogeneity of TCM and TEM, their differentiation stages, and the current models for their generation and maintenance in humans and mice.
Abstract: The memory T cell pool functions as a dynamic repository of antigen-experienced T lymphocytes that accumulate over the lifetime of the individual. Recent studies indicate that memory T lymphocytes contain distinct populations of central memory (TCM) and effector memory (TEM) cells characterized by distinct homing capacity and effector function. This review addresses the heterogeneity of TCM and TEM, their differentiation stages, and the current models for their generation and maintenance in humans and mice.

2,881 citations

Patent
10 Jul 1991
TL;DR: In this paper, a member of a specific binding pair (sbp) is identified by expressing DNA encoding a genetically diverse population of such sbp members in recombinant host cells in which the sbps members are displayed in functional form at the surface of a secreted recombinant genetic display package (rgdp) containing DNA encoding the sbp member or a polypeptide component thereof.
Abstract: A member of a specific binding pair (sbp) is identified by expressing DNA encoding a genetically diverse population of such sbp members in recombinant host cells in which the sbp members are displayed in functional form at the surface of a secreted recombinant genetic display package (rgdp) containing DNA encoding the sbp member or a polypeptide component thereof, by virtue of the sbp member or a polypeptide component thereof being expressed as a fusion with a capsid component of the rgdp. The displayed sbps may be selected by affinity with a complementary sbp member, and the DNA recovered from selected rgdps for expression of the selected sbp members. Antibody sbp members may be thus obtained, with the different chains thereof expressed, one fused to the capsid component and the other in free form for association with the fusion partner polypeptide. A phagemid may be used as an expression vector, with said capsid fusion helping to package the phagemid DNA. Using this method libraries of DNA encoding respective chains of such multimeric sbp members may be combined, thereby obtaining a much greater genetic diversity in the sbp members than could easily be obtained by conventional methods.

2,740 citations

Journal Article

2,378 citations

Journal ArticleDOI
TL;DR: Advances in nanoparticle design that overcome heterogeneous barriers to delivery are discussed, arguing that intelligent nanoparticles design can improve efficacy in general delivery applications while enabling tailored designs for precision applications, thereby ultimately improving patient outcome overall.
Abstract: In recent years, the development of nanoparticles has expanded into a broad range of clinical applications. Nanoparticles have been developed to overcome the limitations of free therapeutics and navigate biological barriers - systemic, microenvironmental and cellular - that are heterogeneous across patient populations and diseases. Overcoming this patient heterogeneity has also been accomplished through precision therapeutics, in which personalized interventions have enhanced therapeutic efficacy. However, nanoparticle development continues to focus on optimizing delivery platforms with a one-size-fits-all solution. As lipid-based, polymeric and inorganic nanoparticles are engineered in increasingly specified ways, they can begin to be optimized for drug delivery in a more personalized manner, entering the era of precision medicine. In this Review, we discuss advanced nanoparticle designs utilized in both non-personalized and precision applications that could be applied to improve precision therapies. We focus on advances in nanoparticle design that overcome heterogeneous barriers to delivery, arguing that intelligent nanoparticle design can improve efficacy in general delivery applications while enabling tailored designs for precision applications, thereby ultimately improving patient outcome overall.

2,179 citations