scispace - formally typeset
Search or ask a question
Author

Annunziata Lapolla

Bio: Annunziata Lapolla is an academic researcher from Case Western Reserve University. The author has contributed to research in topics: Pentosidine & Amadori rearrangement. The author has an hindex of 2, co-authored 2 publications receiving 466 citations.

Papers
More filters
Journal ArticleDOI
01 Oct 1992-Diabetes
TL;DR: A high correlation betweenpentosidine levels and long-wave collagen-linked fluorescence also was observed, suggesting that pentosidine is a generalized marker of accelerated tissue modification by the advanced glycosylation/Maillard reaction, which is enhanced in IDDM patients with severe complications.
Abstract: Pentosidine is an advanced glycosylation end product and protein cross-link that results from the reaction of pentoses with proteins. Recent data indicate that long-term glycation of proteins with glucose also leads to pentosidine formation through sugar fragmentation. In this study, the relationship between the severity of diabetic complications and pentosidine formation was investigated in collagen from skin-punch biopsies from 25 nondiabetic control subjects and 41 IDDM patients with diabetes duration >17 yr. Pentosidine was significantly elevated in all IDDM patients versus control subjects ( P P P P P P P P > 0.05). A high correlation between pentosidine levels and long-wave collagen-linked fluorescence also was observed, suggesting that pentosidine is a generalized marker of accelerated tissue modification by the advanced glycosylation/Maillard reaction, which is enhanced in IDDM patients with severe complications.

300 citations

Journal ArticleDOI
TL;DR: Evidence suggests that the pentoses are the most reactive sugars in pentosidine formation in vitro; however, the origin and importance of free pentoses in vivo, especially during the diabetic state, are not certain.
Abstract: Collagen undergoes progressive browning with age and diabetes characterized by yellowing, fluorescence, and cross-linking. The present research was undertaken in order to investigate the nature of the collagen-linked fluorescence. Human collagen was exhaustively cleaved into peptides by enzymatic digestion. Upon purification, a highly fluorescent chromophore was identified and purified from old human collagen. Structure elucidation revealed the presence of an imidazo [4,5-b] pyridinium-type structure acting as a cross-link between arginine, lysine, and a pentose. This advanced glycosylation end-product and protein cross-link results from the reaction of pentoses with proteins and was named pentosidine. Further work indicated that long-term glycosylation of proteins with hexoses also leads to pentosidine formation through sugar fragmentation. The proposed mechanism of pentosidine formation involves the dehydration of the pentose-derived Amadori compound to form an intermediate which is attacked under base catalysis by the guanido group of arginine. The strict requirement for the Amadori rearrangement is uncertain. However, oxidation is definitely involved since pentosidine is not formed in the absence of oxygen. Five-carbon sugars contributing to pentosidine formation could be formed from larger sugars by oxidative fragmentation or from trioses, tetroses, and ketoses by condensation and/or reverse aldol reactions. Pentosidine increases exponentially in human skin at autopsy. Mean age-adjusted skin levels were significantly increased in subjects with uremia and especially in type 1 diabetics with uremia vs. controls. In skin biopsy, levels were significantly elevated in all diabetic (type 1) vs. control subjects. The highest degree of association was with the cumulative grade of diabetic complication (retinopathy, nephropathy, arterial stiffness, and joint stiffness). Pentosidine also forms in various proteins other than collagen, although to a much lesser extent. In blood, pentosidine is mainly associated with plasma proteins and is highly elevated during uremia. In the lens, it is associated with both water-soluble and -insoluble protein fractions and is especially elevated during brunescent cataract formation. The origin of pentosidine in vivo is uncertain. Evidence suggests that the pentoses are the most reactive sugars in pentosidine formation in vitro; however, the origin and importance of free pentoses in vivo, especially during the diabetic state, are not certain. Possible origins include hemolysis and/or a defect in the primary pentose metabolism.(ABSTRACT TRUNCATED AT 400 WORDS)

176 citations


Cited by
More filters
Journal ArticleDOI
01 Jan 1999-Diabetes
TL;DR: In this article, the authors investigated whether increased oxidative stress has a primary role in the pathogenesis of diabetic complications or whether it is a secondary indicator of end-stage tissue damage in diabetes.
Abstract: Oxidative stress and oxidative damage to tissues are common end points of chronic diseases, such as atherosclerosis, diabetes, and rheumatoid arthritis. The question addressed in this review is whether increased oxidative stress has a primary role in the pathogenesis of diabetic complications or whether it is a secondary indicator of end-stage tissue damage in diabetes. The increase in glycoxidation and lipoxidation products in plasma and tissue proteins suggests that oxidative stress is increased in diabetes. However, some of these products, such as 3-deoxyglucosone adducts to lysine and arginine residues, are formed independent of oxidation chemistry. Elevated levels of oxidizable substrates may also explain the increase in glycoxidation and lipoxidation products in tissue proteins, without the necessity of invoking an increase in oxidative stress. Further, age-adjusted levels of oxidized amino acids, a more direct indicator of oxidative stress, are not increased in skin collagen in diabetes. We propose that the increased chemical modification of proteins by carbohydrates and lipids in diabetes is the result of overload on metabolic pathways involved in detoxification of reactive carbonyl species, leading to a general increase in steady-state levels of reactive carbonyl compounds formed by both oxidative and nonoxidative reactions. The increase in glycoxidation and lipoxidation of tissue proteins in diabetes may therefore be viewed as the result of increased carbonyl stress. The distinction between oxidative and carbonyl stress is discussed along with the therapeutic implications of this difference.

2,310 citations

01 Jan 1999
TL;DR: It is proposed that the increased chemical modification of proteins by carbohydrates and lipids in diabetes is the result of overload on metabolic pathways involved in detoxification of reactivecarbonyl species, leading to a general increase in steady-state levels of reactive carbonyl compounds formed by both oxidative and nonoxidative reactions.

2,221 citations

Journal ArticleDOI
TL;DR: In a model of accelerated atherosclerosis associated with diabetes in genetically manipulated mice, blockade of cell surface RAGE by infusion of a soluble, truncated form of the receptor completely suppressed enhanced formation of vascular lesions, suggesting that interaction of cellular RAGE with its ligands could be a factor contributing to a range of important chronic disorders.
Abstract: Receptor for advanced glycation end products (RAGE) is a member of the immunoglobulin superfamily of cell surface molecules and engages diverse ligands relevant to distinct pathological processes. One class of RAGE ligands includes glycoxidation products, termed advanced glycation end products, which occur in diabetes, at sites of oxidant stress in tissues, and in renal failure and amyloidoses. RAGE also functions as a signal transduction receptor for amyloid beta peptide, known to accumulate in Alzheimer disease in both affected brain parenchyma and cerebral vasculature. Interaction of RAGE with these ligands enhances receptor expression and initiates a positive feedback loop whereby receptor occupancy triggers increased RAGE expression, thereby perpetuating another wave of cellular activation. Sustained expression of RAGE by critical target cells, including endothelium, smooth muscle cells, mononuclear phagocytes, and neurons, in proximity to these ligands, sets the stage for chronic cellular activation and tissue damage. In a model of accelerated atherosclerosis associated with diabetes in genetically manipulated mice, blockade of cell surface RAGE by infusion of a soluble, truncated form of the receptor completely suppressed enhanced formation of vascular lesions. Amelioration of atherosclerosis in these diabetic/atherosclerotic animals by soluble RAGE occurred in the absence of changes in plasma lipids or glycemia, emphasizing the contribution of a lipid- and glycemia-independent mechanism(s) to atherogenesis, which we postulate to be interaction of RAGE with its ligands. Future studies using mice in which RAGE expression has been genetically manipulated and with selective low molecular weight RAGE inhibitors will be required to definitively assign a critical role for RAGE activation in diabetic vasculopathy. However, sustained receptor expression in a microenvironment with a plethora of ligand makes possible prolonged receptor stimulation, suggesting that interaction of cellular RAGE with its ligands could be a factor contributing to a range of important chronic disorders.

814 citations

Journal ArticleDOI
01 Jul 2002-Bone
TL;DR: The results indicate that the adverse changes in the collagen network occur as people age and such changes may lead to the decreased toughness of bone and suggest that nonenzymatic glycation may be an important contributing factor causing changes in collagen and, consequently, leading to the age-related deterioration of bone quality.

735 citations

Journal ArticleDOI
TL;DR: The strong dependence of C ML formation on oxidative conditions together with the increased occurrence of CML in diabetic serum and tissue proteins suggest a role for CML as endogenous biomarker for oxidative damage.
Abstract: N(epsilon)-(Carboxymethyl)lysine (CML), a major product of oxidative modification of glycated proteins, has been suggested to represent a general marker of oxidative stress and long-term damage to proteins in aging, atherosclerosis, and diabetes. To investigate the occurrence and distribution of CML in humans an antiserum specifically recognizing protein-bound CML was generated. The oxidative formation of CML from glycated proteins was reduced by lipoic acid, aminoguanidine, superoxide dismutase, catalase, and particularly vitamin E and desferrioxamine. Immunolocalization of CML in skin, lung, heart, kidney, intestine, intervertebral discs, and particularly in arteries provided evidence for an age-dependent increase in CML accumulation in distinct locations, and acceleration of this process in diabetes. Intense staining of the arterial wall and particularly the elastic membrane was found. High levels of CML modification were observed within atherosclerotic plaques and in foam cells. The preferential location of CML immunoreactivity in lesions may indicate the contribution of glycoxidation to the processes occurring in diabetes and aging. Additionally, we found increased CML content in serum proteins in diabetic patients. The strong dependence of CML formation on oxidative conditions together with the increased occurrence of CML in diabetic serum and tissue proteins suggest a role for CML as endogenous biomarker for oxidative damage.

723 citations