scispace - formally typeset
Search or ask a question
Author

Anouk Zancarini

Bio: Anouk Zancarini is an academic researcher from University of Amsterdam. The author has contributed to research in topics: Rhizosphere & Microbiome. The author has an hindex of 7, co-authored 12 publications receiving 247 citations. Previous affiliations of Anouk Zancarini include Institut national de la recherche agronomique & Centre national de la recherche scientifique.

Papers
More filters
Journal ArticleDOI
16 Sep 2010-Planta
TL;DR: In this paper, the root development response of Arabidopsis thaliana to inoculation with Phyllobacterium brassicacearum STM196 was investigated, and it was found that inoculation resulted in a 50% increase of lateral root growth in Arabidisopsis wild-type seedlings.
Abstract: Plant root development is highly responsive both to changes in nitrate availability and beneficial microorganisms in the rhizosphere. We previously showed that Phyllobacterium brassicacearum STM196, a plant growth-promoting rhizobacteria strain isolated from rapeseed roots, alleviates the inhibition exerted by high nitrate supply on lateral root growth. Since soil-borne bacteria can produce IAA and since this plant hormone may be implicated in the high nitrate-dependent control of lateral root development, we investigated its role in the root development response of Arabidopsis thaliana to STM196. Inoculation with STM196 resulted in a 50% increase of lateral root growth in Arabidopsis wild-type seedlings. This effect was completely abolished in aux1 and axr1 mutants, altered in IAA transport and signaling, respectively, indicating that these pathways are required. The STM196 strain, however, appeared to be a very low IAA producer when compared with the high-IAA-producing Azospirillum brasilense sp245 strain and its low-IAA-producing ipdc mutant. Consistent with the hypothesis that STM196 does not release significant amounts of IAA to the host roots, inoculation with this strain failed to increase root IAA content. Inoculation with STM196 led to increased expression levels of several IAA biosynthesis genes in shoots, increased Trp concentration in shoots, and increased auxin-dependent GUS staining in the root apices of DR5::GUS transgenic plants. All together, our results suggest that STM196 inoculation triggers changes in IAA distribution and homeostasis independently from IAA release by the bacteria.

110 citations

Journal ArticleDOI
15 Oct 2012-PLOS ONE
TL;DR: It was observed that nitrogen availability affected rhizosphere bacterial communities only in presence of the plant, and three contrasted structural and functional adaptive responses of plant-microbe interactions to nitrogen availability were identified.
Abstract: Plant and soil types are usually considered as the two main drivers of the rhizosphere microbial communities. The aim of this work was to study the effect of both N availability and plant genotype on the plant associated rhizosphere microbial communities, in relation to the nutritional strategies of the plant-microbe interactions, for six contrasted Medicago truncatula genotypes. The plants were provided with two different nutrient solutions varying in their nitrate concentrations (0 mM and 10 mM). First, the influence of both nitrogen availability and Medicago truncatula genotype on the genetic structure of the soil bacterial and fungal communities was determined by DNA fingerprint using Automated Ribosomal Intergenic Spacer Analysis (ARISA). Secondly, the different nutritional strategies of the plant-microbe interactions were evaluated using an ecophysiological framework. We observed that nitrogen availability affected rhizosphere bacterial communities only in presence of the plant. Furthermore, we showed that the influence of nitrogen availability on rhizosphere bacterial communities was dependent on the different genotypes of Medicago truncatula. Finally, the nutritional strategies of the plant varied greatly in response to a modification of nitrogen availability. A new conceptual framework was thus developed to study plant-microbe interactions. This framework led to the identification of three contrasted structural and functional adaptive responses of plant-microbe interactions to nitrogen availability.

46 citations

Journal ArticleDOI
TL;DR: Assessment of spatio-temporal variation in the diversity and composition of bacterial and microeukaryotic communities within biofilms in a French river found significant changes in the composition of these microbial communities over the sampling period and between the upstream and downstream stations.
Abstract: Epilithic river biofilms are complex matrix-enclosed communities harboring a great diversity of prokaryotic and eukaryotic microorganisms. Interactions between these communities and the relative impacts of environmental factors on their compositions are poorly understood. In this study, we assessed the spatio-temporal variation in the diversity and composition of bacterial and microeukaryotic communities within biofilms in a French river. Significant changes were found in the composition of these microbial communities over the sampling period and between the upstream and downstream stations. In addition, the beta diversity of the bacterial community tended to decrease along the river, mostly as a result of turnover. These changes could be caused by the different water temperatures and geological and hydrological river contexts at the sampling sites (from karst landscape to river plain). Finally, our network analysis showed multiple correlations among dominant OTUs. Among them, negative correlations between Rhodobacteraceae and two other dominant groups of photosynthetic microorganisms (cyanobacteria and diatoms) were particularly interesting, which raises the question of what environmental factors trigger the changes occurring in benthic microbial photosynthetic communities.

31 citations

Journal ArticleDOI
TL;DR: Comparing the structural and functional diversities of the BCs associated with 15 non-axenic cyanobacterial strains in culture and two natural BCs sampled during cyanob bacterial blooms suggests that BCsassociated with cyanobacteria in culture are good models to better understand the interactions between heterotrophic bacteria and cyanob bacteria.
Abstract: To overcome the limitations associated with studying the interactions between bacterial communities (BCs) and cyanobacteria in natural environments, we compared the structural and functional diversities of the BCs associated with 15 non-axenic cyanobacterial strains in culture and two natural BCs sampled during cyanobacterial blooms. No significant differences in richness and diversity were found between the natural and cultivated BCs, although some of the cyanobacterial strains had been isolated 11 years earlier. Moreover, these BCs shared some similar characteristics, such as a very low abundance of Actinobacteria, but they display significant differences at the operational taxonomic unit (OTU) level. Overall, our findings suggest that BCs associated with cyanobacteria in culture are good models to better understand the interactions between heterotrophic bacteria and cyanobacteria. Additionally, BCs associated with heterocystous cyanobacterial strains cultivated in Z8X culture medium without nitrate (Aphanizomenon-Dolichospermum) demonstrated significant differences compared to BCs associated with non-heterocystous strains cultivated in Z8 culture medium (Planktothrix-Microcystis) in terms of their composition and their ability to utilize different carbon sources, suggesting the potential influence of cyanobacterial metabolism and/or culture media on associated BCs. Finally, half of the dominant OTUs in these BCs were specifically associated with cyanobacteria or other phytoplankton, whereas the remaining OTUs were generally associated with ecosystems containing high organic matter content, such as sludge or intestines.

31 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Novel knowledge and gaps on PGPR modes of action and signals are addressed, recent progress on the links between plant morphological and physiological effects induced by PGPR are highlighted, and the importance of taking into account the size, diversity, and gene expression patterns of PGPR assemblages in the rhizosphere to better understand their impact on plant growth and functioning is shown.
Abstract: The rhizosphere supports the development and activity of a huge and diversified microbial community, including microorganisms capable to promote plant growth. Among the latter, plant growth-promoting rhizobacteria (PGPR) colonize roots of monocots and dicots, and enhance plant growth by direct and indirect mechanisms. Modification of root system architecture by PGPR implicates the production of phytohormones and other signals that lead, mostly, to enhanced lateral root branching and development of root hairs. PGPR also modify root functioning, improve plant nutrition and influence the physiology of the whole plant. Recent results provided first clues as to how PGPR signals could trigger these plant responses. Whether local and/or systemic, the plant molecular pathways involved remain often unknown. From an ecological point of view, it emerged that PGPR form coherent functional groups, whose rhizosphere ecology is influenced by a myriad of abiotic and biotic factors in natural and agricultural soils, and these factors can in turn modulate PGPR effects on roots. In this paper, we address novel knowledge and gaps on PGPR modes of action and signals, and highlight recent progress on the links between plant morphological and physiological effects induced by PGPR. We also show the importance of taking into account the size, diversity, and gene expression patterns of PGPR assemblages in the rhizosphere to better understand their impact on plant growth and functioning. Integrating mechanistic and ecological knowledge on PGPR populations in soil will be a prerequisite to develop novel management strategies for sustainable agriculture.

1,028 citations

Journal ArticleDOI
TL;DR: This chapter reviews the factors that effect the production of this phytohormone, the role of IAA in bacterial physiology and in plant–microbe interactions including phytostimulation and phytopathogenesis.
Abstract: Indole-3-acetic acid (IAA) is an important phytohormone with the capacity to control plant development in both beneficial and deleterious ways. The ability to synthesize IAA is an attribute that many bacteria including both plant growth-promoters and phytopathogens possess. There are three main pathways through which IAA is synthesized; the indole-3-pyruvic acid, indole-3-acetamide and indole-3-acetonitrile pathways. This chapter reviews the factors that effect the production of this phytohormone, the role of IAA in bacterial physiology and in plant–microbe interactions including phytostimulation and phytopathogenesis.

497 citations

Journal ArticleDOI
TL;DR: This work highlights major recent findings in plant microbiota research using comparative community profiling and omics analyses, and discusses these approaches in light of community establishment and beneficial traits like nutrient acquisition and plant health.
Abstract: Plants do not grow as axenic organisms in nature, but host a diverse community of microorganisms, termed the plant microbiota. There is an increasing awareness that the plant microbiota plays a role in plant growth and can provide protection from invading pathogens. Apart from intense research on crop plants, Arabidopsis is emerging as a valuable model system to investigate the drivers shaping stable bacterial communities on leaves and roots and as a tool to decipher the intricate relationship among the host and its colonizing microorganisms. Gnotobiotic experimental systems help establish causal relationships between plant and microbiota genotypes and phenotypes and test hypotheses on biotic and abiotic perturbations in a systematic way. We highlight major recent findings in plant microbiota research using comparative community profiling and omics analyses, and discuss these approaches in light of community establishment and beneficial traits like nutrient acquisition and plant health.

494 citations

Journal ArticleDOI
TL;DR: The developmental processes that give rise to lateral and adventitious roots are discussed and knowledge acquired over the past few years about the mechanisms that regulate adventitious root formation is highlighted.
Abstract: In addition to its role in water and nutrient uptake, the root system is fundamentally important because it anchors a plant to its substrate. Although a wide variety of root systems exist across different species, all plants have a primary root (derived from an embryonic radicle) and different types of lateral roots. Adventitious roots, by comparison, display the same functions as lateral roots but develop from aerial tissues. In addition, they not only develop as an adaptive response to various stresses, such as wounding or flooding, but also are a key limiting component of vegetative propagation. Lateral and adventitious roots share key elements of the genetic and hormonal regulatory networks but are subject to different regulatory mechanisms. In this review, we discuss the developmental processes that give rise to lateral and adventitious roots and highlight knowledge acquired over the past few years about the mechanisms that regulate adventitious root formation.

423 citations

Journal ArticleDOI
TL;DR: There is likely fitness conflict between hosts and symbionts and that fitness outcomes can depend on partner genotypes and ecological factors, and new avenues of research are proposed in this emerging field of microbially mediated plant functional traits.
Abstract: Plants are rife with bacteria and fungi that colonize roots and shoots both externally and internally. By providing novel nutritional and defense pathways and influencing plant biochemical pathways, microbes can fundamentally alter plant phenotypes. Here we review the widespread nature of microbially mediated plant functional traits. We highlight that there is likely fitness conflict between hosts and symbionts and that fitness outcomes can depend on partner genotypes and ecological factors. Microbes may influence ecosystems through their effects on the functional trait values and population dynamics of their plant hosts. These effects may feed back on symbiont evolution by altering transmission rates of symbionts and scale up to ecosystem processes and services. We end by proposing new avenues of research in this emerging field.

411 citations