scispace - formally typeset
Search or ask a question
Author

Ansheng Liu

Other affiliations: Xiaomi
Bio: Ansheng Liu is an academic researcher from Intel. The author has contributed to research in topics: Silicon photonics & Hybrid silicon laser. The author has an hindex of 31, co-authored 101 publications receiving 7986 citations. Previous affiliations of Ansheng Liu include Xiaomi.


Papers
More filters
Journal ArticleDOI
12 Feb 2004-Nature
TL;DR: An approach based on a metal–oxide–semiconductor (MOS) capacitor structure embedded in a silicon waveguide that can produce high-speed optical phase modulation is described and an all-silicon optical modulator with a modulation bandwidth exceeding 1 GHz is demonstrated.
Abstract: Silicon has long been the optimal material for electronics, but it is only relatively recently that it has been considered as a material option for photonics1. One of the key limitations for using silicon as a photonic material has been the relatively low speed of silicon optical modulators compared to those fabricated from III–V semiconductor compounds2,3,4,5,6 and/or electro-optic materials such as lithium niobate7,8,9. To date, the fastest silicon-waveguide-based optical modulator that has been demonstrated experimentally has a modulation frequency of only ∼20 MHz (refs 10, 11), although it has been predicted theoretically that a ∼1-GHz modulation frequency might be achievable in some device structures12,13. Here we describe an approach based on a metal–oxide–semiconductor (MOS) capacitor structure embedded in a silicon waveguide that can produce high-speed optical phase modulation: we demonstrate an all-silicon optical modulator with a modulation bandwidth exceeding 1 GHz. As this technology is compatible with conventional complementary MOS (CMOS) processing, monolithic integration of the silicon modulator with advanced electronics on a single silicon substrate becomes possible.

1,612 citations

Journal ArticleDOI
17 Feb 2005-Nature
TL;DR: The demonstration of a continuous-wave silicon Raman laser is demonstrated and it is shown that TPA-induced FCA in silicon can be significantly reduced by introducing a reverse-biased p-i-n diode embedded in a silicon waveguide.
Abstract: Achieving optical gain and/or lasing in silicon has been one of the most challenging goals in silicon-based photonics because bulk silicon is an indirect bandgap semiconductor and therefore has a very low light emission efficiency. Recently, stimulated Raman scattering has been used to demonstrate light amplification and lasing in silicon. However, because of the nonlinear optical loss associated with two-photon absorption (TPA)-induced free carrier absorption (FCA), until now lasing has been limited to pulsed operation. Here we demonstrate a continuous-wave silicon Raman laser. Specifically, we show that TPA-induced FCA in silicon can be significantly reduced by introducing a reverse-biased p-i-n diode embedded in a silicon waveguide. The laser cavity is formed by coating the facets of the silicon waveguide with multilayer dielectric films. We have demonstrated stable single mode laser output with side-mode suppression of over 55 dB and linewidth of less than 80 MHz. The lasing threshold depends on the p-i-n reverse bias voltage and the laser wavelength can be tuned by adjusting the wavelength of the pump laser. The demonstration of a continuous-wave silicon laser represents a significant milestone for silicon-based optoelectronic devices.

1,267 citations

Journal ArticleDOI
20 Jan 2005-Nature
TL;DR: The experimental demonstration of Raman lasing in a compact, all-silicon, waveguide cavity on a single silicon chip represents an important step towards producing practical continuous-wave optical amplifiers and lasers that could be integrated with other optoelectronic components onto CMOS-compatible silicon chips.
Abstract: With the growing use of optoelectronics in information technology, manipulating light is almost as important as manipulating electrons. Unfortunately silicon, workhorse of modern microelectronics, is next to useless in optical applications. There has been a massive effort to overcome silicon's inadequacies, and ways of coaxing silicon to handle light are under development but a key component — the laser — has been problematic. Last year a silicon laser was produced, but it involved metres of optical fibre. Now workers in Intel's research labs have come up with an all-silicon laser on a single chip. The device is compact and readily integrated with other silicon components. The possibility of light generation and/or amplification in silicon has attracted a great deal of attention1 for silicon-based optoelectronic applications owing to the potential for forming inexpensive, monolithic integrated optical components. Because of its indirect bandgap, bulk silicon shows very inefficient band-to-band radiative electron–hole recombination. Light emission in silicon has thus focused on the use of silicon engineered materials such as nanocrystals2,3,4,5, Si/SiO2 superlattices6, erbium-doped silicon-rich oxides7,8,9,10, surface-textured bulk silicon11 and Si/SiGe quantum cascade structures12. Stimulated Raman scattering (SRS) has recently been demonstrated as a mechanism to generate optical gain in planar silicon waveguide structures13,14,15,16,17,18,19,20,21. In fact, net optical gain in the range 2–11 dB due to SRS has been reported in centimetre-sized silicon waveguides using pulsed pumping18,19,20,21. Recently, a lasing experiment involving silicon as the gain medium by way of SRS was reported, where the ring laser cavity was formed by an 8-m-long optical fibre22. Here we report the experimental demonstration of Raman lasing in a compact, all-silicon, waveguide cavity on a single silicon chip. This demonstration represents an important step towards producing practical continuous-wave optical amplifiers and lasers that could be integrated with other optoelectronic components onto CMOS-compatible silicon chips.

850 citations

Journal ArticleDOI
TL;DR: A high-speed and highly scalable silicon optical modulator based on the free carrier plasma dispersion effect is presented that will enable silicon modulators to be one of the key building blocks for integrated silicon photonic chips for next generation communication networks as well as future high performance computing applications.
Abstract: We present a high-speed and highly scalable silicon optical modulator based on the free carrier plasma dispersion effect. The fast refractive index modulation of the device is due to electric-field-induced carrier depletion in a Silicon-on-Insulator waveguide containing a reverse biased pn junction. To achieve high-speed performance, a travelling-wave design is used to allow co-propagation of electrical and optical signals along the waveguide. We demonstrate high-frequency modulator optical response with 3 dB bandwidth of ~20 GHz and data transmission up to 30 Gb/s. Such high-speed data transmission capability will enable silicon modulators to be one of the key building blocks for integrated silicon photonic chips for next generation communication networks as well as future high performance computing applications.

679 citations

Journal ArticleDOI
TL;DR: A silicon modulator with an intrinsic bandwidth of 10 GHz and data transmission from 6 Gbps to 10 Gbps is demonstrated.
Abstract: We demonstrate a silicon modulator with an intrinsic bandwidth of 10 GHz and data transmission from 6 Gbps to 10 Gbps Such unprecedented bandwidth performance in silicon is achieved through improvements in material quality, device design, and driver circuitry

545 citations


Cited by
More filters
Journal ArticleDOI
11 Oct 2012-Nature
TL;DR: This work reviews recent progress in graphene research and in the development of production methods, and critically analyse the feasibility of various graphene applications.
Abstract: Recent years have witnessed many breakthroughs in research on graphene (the first two-dimensional atomic crystal) as well as a significant advance in the mass production of this material. This one-atom-thick fabric of carbon uniquely combines extreme mechanical strength, exceptionally high electronic and thermal conductivities, impermeability to gases, as well as many other supreme properties, all of which make it highly attractive for numerous applications. Here we review recent progress in graphene research and in the development of production methods, and critically analyse the feasibility of various graphene applications.

7,987 citations

Journal ArticleDOI
02 Jun 2011-Nature
TL;DR: Graphene-based optical modulation mechanism, with combined advantages of compact footprint, low operation voltage and ultrafast modulation speed across a broad range of wavelengths, can enable novel architectures for on-chip optical communications.
Abstract: Graphene, the single-atom-thick form of carbon, holds promise for many applications, notably in electronics where it can complement or be integrated with silicon-based devices. Intense efforts have been devoted to develop a key enabling device, a broadband, fast optical modulator with a small device footprint. Now Liu et al. demonstrate an exciting new possibility for graphene in the area of on-chip optical communication: a graphene-based optical modulator integrated with a silicon chip. This new device relies on the electrical tuning of the Fermi level of the graphene sheet, and achieves modulation of guided light at frequencies over 1 gigahertz, together with a broad operating spectrum. At just 25 square micrometres in area, it is one of the smallest of its type. Integrated optical modulators with high modulation speed, small footprint and large optical bandwidth are poised to be the enabling devices for on-chip optical interconnects1,2. Semiconductor modulators have therefore been heavily researched over the past few years. However, the device footprint of silicon-based modulators is of the order of millimetres, owing to its weak electro-optical properties3. Germanium and compound semiconductors, on the other hand, face the major challenge of integration with existing silicon electronics and photonics platforms4,5,6. Integrating silicon modulators with high-quality-factor optical resonators increases the modulation strength, but these devices suffer from intrinsic narrow bandwidth and require sophisticated optical design; they also have stringent fabrication requirements and limited temperature tolerances7. Finding a complementary metal-oxide-semiconductor (CMOS)-compatible material with adequate modulation speed and strength has therefore become a task of not only scientific interest, but also industrial importance. Here we experimentally demonstrate a broadband, high-speed, waveguide-integrated electroabsorption modulator based on monolayer graphene. By electrically tuning the Fermi level of the graphene sheet, we demonstrate modulation of the guided light at frequencies over 1 GHz, together with a broad operation spectrum that ranges from 1.35 to 1.6 µm under ambient conditions. The high modulation efficiency of graphene results in an active device area of merely 25 µm2, which is among the smallest to date. This graphene-based optical modulation mechanism, with combined advantages of compact footprint, low operation voltage and ultrafast modulation speed across a broad range of wavelengths, can enable novel architectures for on-chip optical communications.

3,105 citations

Journal ArticleDOI
19 May 2005-Nature
TL;DR: Electro-optic modulators are one of the most critical components in optoelectronic integration, and decreasing their size may enable novel chip architectures, and here a high-speed electro-optical modulator in compact silicon structures is experimentally demonstrated.
Abstract: Metal interconnections are expected to become the limiting factor for the performance of electronic systems as transistors continue to shrink in size. Replacing them by optical interconnections, at different levels ranging from rack-to-rack down to chip-to-chip and intra-chip interconnections, could provide the low power dissipation, low latencies and high bandwidths that are needed. The implementation of optical interconnections relies on the development of micro-optical devices that are integrated with the microelectronics on chips. Recent demonstrations of silicon low-loss waveguides, light emitters, amplifiers and lasers approach this goal, but a small silicon electro-optic modulator with a size small enough for chip-scale integration has not yet been demonstrated. Here we experimentally demonstrate a high-speed electro-optical modulator in compact silicon structures. The modulator is based on a resonant light-confining structure that enhances the sensitivity of light to small changes in refractive index of the silicon and also enables high-speed operation. The modulator is 12 micrometres in diameter, three orders of magnitude smaller than previously demonstrated. Electro-optic modulators are one of the most critical components in optoelectronic integration, and decreasing their size may enable novel chip architectures.

2,336 citations

Journal ArticleDOI
TL;DR: The techniques that have, and will, be used to implement silicon optical modulators, as well as the outlook for these devices, and the candidate solutions of the future are discussed.
Abstract: Optical technology is poised to revolutionize short-reach interconnects. The leading candidate technology is silicon photonics, and the workhorse of such an interconnect is the optical modulator. Modulators have been improved dramatically in recent years, with a notable increase in bandwidth from the megahertz to the multigigahertz regime in just over half a decade. However, the demands of optical interconnects are significant, and many questions remain unanswered as to whether silicon can meet the required performance metrics. Minimizing metrics such as the device footprint and energy requirement per bit, while also maximizing bandwidth and modulation depth, is non-trivial. All of this must be achieved within an acceptable thermal tolerance and optical spectral width using CMOS-compatible fabrication processes. This Review discusses the techniques that have been (and will continue to be) used to implement silicon optical modulators, as well as providing an outlook for these devices and the candidate solutions of the future.

2,110 citations

Journal ArticleDOI
TL;DR: An overview of the current state-of-the-art in silicon nanophotonic ring resonators is presented in this paper, where the basic theory of ring resonance is discussed and applied to the peculiarities of submicron silicon photonic wire waveguides: the small dimensions and tight bend radii, sensitivity to perturbations and the boundary conditions of the fabrication processes.
Abstract: An overview is presented of the current state-of-the-art in silicon nanophotonic ring resonators. Basic theory of ring resonators is discussed, and applied to the peculiarities of submicron silicon photonic wire waveguides: the small dimensions and tight bend radii, sensitivity to perturbations and the boundary conditions of the fabrication processes. Theory is compared to quantitative measurements. Finally, several of the more promising applications of silicon ring resonators are discussed: filters and optical delay lines, label-free biosensors, and active rings for efficient modulators and even light sources.

1,989 citations