scispace - formally typeset
Search or ask a question
Author

Anthonius S. M. Dofferhoff

Bio: Anthonius S. M. Dofferhoff is an academic researcher from Radboud University Nijmegen. The author has contributed to research in topics: Sofosbuvir & Adverse effect. The author has an hindex of 3, co-authored 7 publications receiving 85 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The virological and immunological responses following plasma treatment helps to understand which COVID-19 patients may benefit from this therapy and should be the focus of future studies, and substantiates that convalescent plasma should be studied as early as possible in the disease course or at least preceding the start of an autologous humoral response.
Abstract: In a randomized clinical trial of 86 hospitalized COVID-19 patients comparing standard care to treatment with 300mL convalescent plasma containing high titers of neutralizing SARS-CoV-2 antibodies, no overall clinical benefit was observed. Using a comprehensive translational approach, we unravel the virological and immunological responses following treatment to disentangle which COVID-19 patients may benefit and should be the focus of future studies. Convalescent plasma is safe, does not improve survival, has no effect on the disease course, nor does plasma enhance viral clearance in the respiratory tract, influence SARS-CoV-2 antibody development or serum proinflammatory cytokines levels. Here, we show that the vast majority of patients already had potent neutralizing SARS-CoV-2 antibodies at hospital admission and with comparable titers to carefully selected plasma donors. This resulted in the decision to terminate the trial prematurely. Treatment with convalescent plasma should be studied early in the disease course or at least preceding autologous humoral response development.

132 citations

Journal ArticleDOI
TL;DR: Chest CT analysis using the CO VID-19 reporting and data system (CO-RADS) enables rapid and reliable diagnosis of COVID-19, particularly when symptom duration is greater than 48 hours.
Abstract: Background Clinicians need rapid and reliable diagnosis of coronavirus disease 2019 (COVID-19) for proper risk stratification, isolation strategies, and treatment decisions. Purpose To assess the real-life performance of radiologist emergency department chest CT interpretation for diagnosing COVID-19 during the acute phase of the pandemic, using the COVID-19 reporting and data system (CO-RADS). Materials and Methods This retrospective multicenter study included consecutive patients who presented to emergency departments in six medical centers between March and April 2020 with moderate to severe upper respiratory symptoms suspicious for COVID-19. As part of clinical practice, chest CT was obtained for primary workup and scored using the 5-point CO-RADS scheme for suspicion of COVID-19. CT was compared with SARS-CoV-2 RT-PCR, and a clinical reference standard established by a multidisciplinary group of clinicians based on RT-PCR, COVID-19 contact history, oxygen therapy, timing of RT-PCR testing and likely alternative diagnosis. Performance of CT was estimated using area under the receiver operating characteristics curve (AUC) analysis and diagnostic odds ratios (OR) against both reference standards. Subgroup analysis was performed based on symptom duration grouped presentations of 7 days. Results A total of 1070 patients (median age 66, IQR 54-75, 626 men) were included, of whom 536/1070 (50%) had a positive RT-PCR, 137/1070 (13%) patients were considered to have a possible or probable COVID- 19 based on the clinical reference standard. Chest CT yielded an AUC of 0.87 (95%CI 0.84-0.89) compared with RT-PCR and 0.87 (95%CI 0.85-0.89) compared with the clinical reference standard. A CO-RADS score ≥4 yielded an OR of 25.9 (95%CI 18.7-35.9) for a COVID-19 diagnosis by RT-PCR, and an OR of 30.6 (95%CI 21.1-44.4) by the clinical reference standard. For symptom duration of less than 48 hours, the AUC fell to 0.71 (95%CI 0.62-0.80; P<.001). Conclusion Chest CT analysis using the COVID-19 reporting and data system (CO-RADS) enables rapid and reliable diagnosis of COVID-19, particularly when symptom duration is greater than 48 hours. See also the editorial by Elicker.

44 citations

Journal ArticleDOI
TL;DR: In this article, a Markov model was used to provide a well-supported timeline towards HCV elimination in The Netherlands, and two main scenarios were devised: status quo and gradual decline.
Abstract: Background: The Netherlands strives for hepatitis C virus (HCV) elimination, in accordance with the World Health Organization targets. An accurate estimate when HCV elimination will be reached is elusive. We have embarked on a nationwide HCV elimination project (CELINE) that allowed us to harvest detailed data on the Dutch HCV epidemic. This study aims to provide a well‐supported timeline towards HCV elimination in The Netherlands. Methods: A previously published Markov model was used, adopting published data and unpublished CELINE project data. Two main scenarios were devised. In the Status Quo scenario, 2020 diagnosis and treatment levels remained constant in subsequent years. In the Gradual Decline scenario, an annual decrease of 10% in both diagnoses and treatments was implemented, starting in 2020. WHO incidence target was disregarded, due to low HCV incidence in The Netherlands (≤5 per 100,000). Results: Following the Status Quo and Gradual Decline scenarios, The Netherlands would meet WHO’s elimination targets by 2027 and 2032, respectively. From 2015 to 2030, liver‐related mortality would be reduced by 97% in the Status Quo and 93% in the Gradual Decline scenario. Compared to the Status Quo scenario, the Gradual Decline scenario would result in 12 excess cases of decompensated cirrhosis, 18 excess cases of hepatocellular carcinoma, and 20 excess cases of liverrelated death from 2020-2030. Conclusions: The Netherlands is on track to reach HCV elimination by 2030. However, it is vital that HCV elimination remains high on the agenda to ensure adequate numbers of patients are being diagnosed and treated.

7 citations


Cited by
More filters
01 Jan 2020
TL;DR: Prolonged viral shedding provides the rationale for a strategy of isolation of infected patients and optimal antiviral interventions in the future.
Abstract: Summary Background Since December, 2019, Wuhan, China, has experienced an outbreak of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Epidemiological and clinical characteristics of patients with COVID-19 have been reported but risk factors for mortality and a detailed clinical course of illness, including viral shedding, have not been well described. Methods In this retrospective, multicentre cohort study, we included all adult inpatients (≥18 years old) with laboratory-confirmed COVID-19 from Jinyintan Hospital and Wuhan Pulmonary Hospital (Wuhan, China) who had been discharged or had died by Jan 31, 2020. Demographic, clinical, treatment, and laboratory data, including serial samples for viral RNA detection, were extracted from electronic medical records and compared between survivors and non-survivors. We used univariable and multivariable logistic regression methods to explore the risk factors associated with in-hospital death. Findings 191 patients (135 from Jinyintan Hospital and 56 from Wuhan Pulmonary Hospital) were included in this study, of whom 137 were discharged and 54 died in hospital. 91 (48%) patients had a comorbidity, with hypertension being the most common (58 [30%] patients), followed by diabetes (36 [19%] patients) and coronary heart disease (15 [8%] patients). Multivariable regression showed increasing odds of in-hospital death associated with older age (odds ratio 1·10, 95% CI 1·03–1·17, per year increase; p=0·0043), higher Sequential Organ Failure Assessment (SOFA) score (5·65, 2·61–12·23; p Interpretation The potential risk factors of older age, high SOFA score, and d-dimer greater than 1 μg/mL could help clinicians to identify patients with poor prognosis at an early stage. Prolonged viral shedding provides the rationale for a strategy of isolation of infected patients and optimal antiviral interventions in the future. Funding Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences; National Science Grant for Distinguished Young Scholars; National Key Research and Development Program of China; The Beijing Science and Technology Project; and Major Projects of National Science and Technology on New Drug Creation and Development.

4,408 citations

Journal ArticleDOI
TL;DR: To continually assess, as more evidence becomes available, whether convalescent plasma or hyperimmune immunoglobulin transfusion is effective and safe in treatment of people with COVID-19, a first living update of this review is published.
Abstract: Background Convalescent plasma and hyperimmune immunoglobulin may reduce mortality in patients with viral respiratory diseases, and are currently being investigated in trials as potential therapy for coronavirus disease 2019 (COVID-19). A thorough understanding of the current body of evidence regarding the benefits and risks is required. OBJECTIVES: To continually assess, as more evidence becomes available, whether convalescent plasma or hyperimmune immunoglobulin transfusion is effective and safe in treatment of people with COVID-19. Search methods We searched the World Health Organization (WHO) COVID-19 Global Research Database, MEDLINE, Embase, Cochrane COVID-19 Study Register, Centers for Disease Control and Prevention COVID-19 Research Article Database and trial registries to identify completed and ongoing studies on 4 June 2020. Selection criteria We followed standard Cochrane methodology. We included studies evaluating convalescent plasma or hyperimmune immunoglobulin for people with COVID-19, irrespective of study design, disease severity, age, gender or ethnicity. We excluded studies including populations with other coronavirus diseases (severe acute respiratory syndrome (SARS) or Middle East respiratory syndrome (MERS)) and studies evaluating standard immunoglobulin. Data collection and analysis We followed standard Cochrane methodology. To assess bias in included studies, we used the Cochrane 'Risk of bias' tool for randomised controlled trials (RCTs), the Risk of Bias in Non-randomised Studies - of Interventions (ROBINS-I) tool for controlled non-randomised studies of interventions (NRSIs), and the assessment criteria for observational studies, provided by Cochrane Childhood Cancer for non-controlled NRSIs. MAIN RESULTS: This is the first living update of our review. We included 20 studies (1 RCT, 3 controlled NRSIs, 16 non-controlled NRSIs) with 5443 participants, of whom 5211 received convalescent plasma, and identified a further 98 ongoing studies evaluating convalescent plasma or hyperimmune immunoglobulin, of which 50 are randomised. We did not identify any completed studies evaluating hyperimmune immunoglobulin. Overall risk of bias of included studies was high, due to study design, type of participants, and other previous or concurrent treatments. Effectiveness of convalescent plasma for people with COVID-19 We included results from four controlled studies (1 RCT (stopped early) with 103 participants, of whom 52 received convalescent plasma; and 3 controlled NRSIs with 236 participants, of whom 55 received convalescent plasma) to assess effectiveness of convalescent plasma. Control groups received standard care at time of treatment without convalescent plasma. All-cause mortality at hospital discharge (1 controlled NRSI, 21 participants) We are very uncertain whether convalescent plasma has any effect on all-cause mortality at hospital discharge (risk ratio (RR) 0.89, 95% confidence interval (CI) 0.61 to 1.31; very low-certainty evidence). Time to death (1 RCT, 103 participants; 1 controlled NRSI, 195 participants) We are very uncertain whether convalescent plasma prolongs time to death (RCT: hazard ratio (HR) 0.74, 95% CI 0.30 to 1.82; controlled NRSI: HR 0.46, 95% CI 0.22 to 0.96; very low-certainty evidence). Improvement of clinical symptoms, assessed by need for respiratory support (1 RCT, 103 participants; 1 controlled NRSI, 195 participants) We are very uncertain whether convalescent plasma has any effect on improvement of clinical symptoms at seven days (RCT: RR 0.98, 95% CI 0.30 to 3.19), 14 days (RCT: RR 1.85, 95% CI 0.91 to 3.77; controlled NRSI: RR 1.08, 95% CI 0.91 to 1.29), and 28 days (RCT: RR 1.20, 95% CI 0.80 to 1.81; very low-certainty evidence). Quality of life No studies reported this outcome. Safety of convalescent plasma for people with COVID-19 We included results from 1 RCT, 3 controlled NRSIs and 10 non-controlled NRSIs assessing safety of convalescent plasma. Reporting of adverse events and serious adverse events was variable. The controlled studies reported on adverse events and serious adverse events only in participants receiving convalescent plasma. The duration of follow-up varied. Some, but not all, studies included death as a serious adverse event. Grade 3 or 4 adverse events (13 studies, 201 participants) The studies did not report the grade of adverse events. Thirteen studies (201 participants) reported on adverse events of possible grade 3 or 4 severity. The majority of these adverse events were allergic or respiratory events. We are very uncertain whether or not convalescent plasma therapy affects the risk of moderate to severe adverse events (very low-certainty evidence). Serious adverse events (14 studies, 5201 participants) Fourteen studies (5201 participants) reported on serious adverse events. The majority of participants were from one non-controlled NRSI (5000 participants), which reported only on serious adverse events limited to the first four hours after convalescent plasma transfusion. This study included death as a serious adverse event; they reported 15 deaths, four of which they classified as potentially, probably or definitely related to transfusion. Other serious adverse events reported in all studies were predominantly allergic or respiratory in nature, including anaphylaxis, transfusion-associated dyspnoea, and transfusion-related acute lung injury (TRALI). We are very uncertain whether or not convalescent plasma affects the number of serious adverse events. Authors' conclusions We are very uncertain whether convalescent plasma is beneficial for people admitted to hospital with COVID-19. For safety outcomes we also included non-controlled NRSIs. There was limited information regarding adverse events. Of the controlled studies, none reported on this outcome in the control group. There is only very low-certainty evidence for safety of convalescent plasma for COVID-19. While major efforts to conduct research on COVID-19 are being made, problems with recruiting the anticipated number of participants into these studies are conceivable. The early termination of the first RCT investigating convalescent plasma, and the multitude of studies registered in the past months illustrate this. It is therefore necessary to critically assess the design of these registered studies, and well-designed studies should be prioritised. Other considerations for these studies are the need to report outcomes for all study arms in the same way, and the importance of maintaining comparability in terms of co-interventions administered in all study arms. There are 98 ongoing studies evaluating convalescent plasma and hyperimmune immunoglobulin, of which 50 are RCTs. This is the first living update of the review, and we will continue to update this review periodically. These updates may show different results to those reported here.

317 citations

Journal ArticleDOI
TL;DR: This study shows that vaccinated individuals retain T cell immunity to the SARS-CoV-2 Omicron variant, potentially balancing the lack of neutralizing antibodies in preventing or limiting severe COVID-19 cases.
Abstract: The severe acute respiratory distress syndrome coronavirus 2 (SARS-CoV-2) Omicron variant is spreading rapidly, even in vaccinated individuals, raising concerns about immune escape. Here, we studied neutralizing antibodies and T cell responses targeting SARS-CoV-2 D614G [wild type (WT)] and the Beta, Delta, and Omicron variants of concern in a cohort of 60 health care workers after immunization with ChAdOx-1 S, Ad26.COV2.S, mRNA-1273, or BNT162b2. High binding antibody levels against WT SARS-CoV-2 spike (S) were detected 28 days after vaccination with both mRNA vaccines (mRNA-1273 or BNT162b2), which substantially decreased after 6 months. In contrast, antibody levels were lower after Ad26.COV2.S vaccination but did not wane. Neutralization assays showed consistent cross-neutralization of the Beta and Delta variants, but neutralization of Omicron was significantly lower or absent. BNT162b2 booster vaccination after either two mRNA-1273 immunizations or Ad26.COV2 priming partially restored neutralization of the Omicron variant, but responses were still up to 17-fold decreased compared with WT. SARS-CoV-2–specific T cells were detected up to 6 months after all vaccination regimens, with more consistent detection of specific CD4+ than CD8+ T cells. No significant differences were detected between WT- and variant-specific CD4+ or CD8+ T cell responses, including Omicron, indicating minimal escape at the T cell level. This study shows that vaccinated individuals retain T cell immunity to the SARS-CoV-2 Omicron variant, potentially balancing the lack of neutralizing antibodies in preventing or limiting severe COVID-19. Booster vaccinations are needed to further restore Omicron cross-neutralization by antibodies. Description Vaccination-induced SARS-CoV-2–specific CD4+ and CD8+ T cells targeting the ancestral spike protein cross-recognize the Omicron variant. T cells stand strong against Omicron The severe acute respiratory distress syndrome coronavirus 2 (SARS-CoV-2) Omicron variant of concern (VOC) caused an unprecedented rise in COVID-19 cases, even among vaccinated individuals. Omicron has a high number of mutations in the spike protein, probably aiding its evasion of immune responses. GeurtsvanKessel et al. studied humoral and cellular immune responses to Omicron and other VOCs to understand how vaccinated individuals are protected against Omicron. They found that antibody cross-neutralization of Omicron was very low or absent compared with WT, Beta, and Delta variants, but could be partially restored by a third booster vaccination. T cells recognized Omicron just as effectively as other VOCs, suggesting that vaccinated individuals maintain T cell immunity, which could provide protection in the absence of neutralizing antibodies, limiting severe disease.

304 citations

Journal ArticleDOI
TL;DR: In this paper, the authors conducted an open-label, randomized controlled trial of convalescent plasma for adults with COVID-19 receiving oxygen within 12 d of respiratory symptom onset ( NCT04348656 ).
Abstract: The efficacy of convalescent plasma for coronavirus disease 2019 (COVID-19) is unclear. Although most randomized controlled trials have shown negative results, uncontrolled studies have suggested that the antibody content could influence patient outcomes. We conducted an open-label, randomized controlled trial of convalescent plasma for adults with COVID-19 receiving oxygen within 12 d of respiratory symptom onset ( NCT04348656 ). Patients were allocated 2:1 to 500 ml of convalescent plasma or standard of care. The composite primary outcome was intubation or death by 30 d. Exploratory analyses of the effect of convalescent plasma antibodies on the primary outcome was assessed by logistic regression. The trial was terminated at 78% of planned enrollment after meeting stopping criteria for futility. In total, 940 patients were randomized, and 921 patients were included in the intention-to-treat analysis. Intubation or death occurred in 199/614 (32.4%) patients in the convalescent plasma arm and 86/307 (28.0%) patients in the standard of care arm-relative risk (RR) = 1.16 (95% confidence interval (CI) 0.94-1.43, P = 0.18). Patients in the convalescent plasma arm had more serious adverse events (33.4% versus 26.4%; RR = 1.27, 95% CI 1.02-1.57, P = 0.034). The antibody content significantly modulated the therapeutic effect of convalescent plasma. In multivariate analysis, each standardized log increase in neutralization or antibody-dependent cellular cytotoxicity independently reduced the potential harmful effect of plasma (odds ratio (OR) = 0.74, 95% CI 0.57-0.95 and OR = 0.66, 95% CI 0.50-0.87, respectively), whereas IgG against the full transmembrane spike protein increased it (OR = 1.53, 95% CI 1.14-2.05). Convalescent plasma did not reduce the risk of intubation or death at 30 d in hospitalized patients with COVID-19. Transfusion of convalescent plasma with unfavorable antibody profiles could be associated with worse clinical outcomes compared to standard care.

169 citations

Journal ArticleDOI
TL;DR: Develop evidence-based, rapid, living guidelines intended to support patients, clinicians, and other healthcare professionals in their decisions about treatment and management of patients with COVID-19.
Abstract: Abstract Background There are many pharmacologic therapies that are being used or considered for treatment of coronavirus disease 2019 (COVID-19), with rapidly changing efficacy and safety evidence from trials. Objective Develop evidence-based, rapid, living guidelines intended to support patients, clinicians, and other healthcare professionals in their decisions about treatment and management of patients with COVID-19. Methods In March 2020, the Infectious Diseases Society of America (IDSA) formed a multidisciplinary guideline panel of infectious disease clinicians, pharmacists, and methodologists with varied areas of expertise to regularly review the evidence and make recommendations about the treatment and management of persons with COVID-19. The process used a living guideline approach and followed a rapid recommendation development checklist. The panel prioritized questions and outcomes. A systematic review of the peer-reviewed and grey literature was conducted at regular intervals. The Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach was used to assess the certainty of evidence and make recommendations. Results Based on the most recent search conducted on May 31, 2022, the IDSA guideline panel has made 30 recommendations for the treatment and management of the following groups/populations: pre- and post-exposure prophylaxis, ambulatory with mild-to-moderate disease, hospitalized with mild-to-moderate, severe but not critical, and critical disease. As these are living guidelines, the most recent recommendations can be found online at: https://idsociety.org/COVID19guidelines. Conclusions At the inception of its work, the panel has expressed the overarching goal that patients be recruited into ongoing trials. Since then, many trials were done which provided much needed evidence for COVID-19 therapies. There still remain many unanswered questions as the pandemic evolved which we hope future trials can answer.

120 citations