scispace - formally typeset
Search or ask a question
Author

Anthony A. Hyman

Bio: Anthony A. Hyman is an academic researcher from Max Planck Society. The author has contributed to research in topics: Microtubule & Centrosome. The author has an hindex of 126, co-authored 349 publications receiving 52594 citations. Previous affiliations of Anthony A. Hyman include ETH Zurich & University of California, San Francisco.


Papers
More filters
Journal ArticleDOI
TL;DR: This work has shown that liquid–liquid phase separation driven by multivalent macromolecular interactions is an important organizing principle for biomolecular condensates and has proposed a physical framework for this organizing principle.
Abstract: In addition to membrane-bound organelles, eukaryotic cells feature various membraneless compartments, including the centrosome, the nucleolus and various granules. Many of these compartments form through liquid–liquid phase separation, and the principles, mechanisms and regulation of their assembly as well as their cellular functions are now beginning to emerge. Biomolecular condensates are micron-scale compartments in eukaryotic cells that lack surrounding membranes but function to concentrate proteins and nucleic acids. These condensates are involved in diverse processes, including RNA metabolism, ribosome biogenesis, the DNA damage response and signal transduction. Recent studies have shown that liquid–liquid phase separation driven by multivalent macromolecular interactions is an important organizing principle for biomolecular condensates. With this physical framework, it is now possible to explain how the assembly, composition, physical properties and biochemical and cellular functions of these important structures are regulated.

3,294 citations

Journal ArticleDOI
26 Jun 2009-Science
TL;DR: It is shown that P granules exhibit liquid-like behaviors, including fusion, dripping, and wetting, which is used to estimate their viscosity and surface tension, and reflects a classic phase transition, in which polarity proteins vary the condensation point across the cell.
Abstract: In sexually reproducing organisms, embryos specify germ cells, which ultimately generate sperm and eggs In Caenorhabditis elegans, the first germ cell is established when RNA and protein-rich P granules localize to the posterior of the one-cell embryo Localization of P granules and their physical nature remain poorly understood Here we show that P granules exhibit liquid-like behaviors, including fusion, dripping, and wetting, which we used to estimate their viscosity and surface tension As with other liquids, P granules rapidly dissolved and condensed Localization occurred by a biased increase in P granule condensation at the posterior This process reflects a classic phase transition, in which polarity proteins vary the condensation point across the cell Such phase transitions may represent a fundamental physicochemical mechanism for structuring the cytoplasm

2,134 citations

Journal ArticleDOI
TL;DR: The basic physical concepts necessary to understand the consequences of liquid-like states for biological functions are discussed.
Abstract: Cells organize many of their biochemical reactions in non-membrane compartments. Recent evidence has shown that many of these compartments are liquids that form by phase separation from the cytoplasm. Here we discuss the basic physical concepts necessary to understand the consequences of liquid-like states for biological functions.

2,088 citations

Journal ArticleDOI
27 Aug 2015-Cell
TL;DR: It is proposed that liquid-like compartments carry the trade-off between functionality and risk of aggregation and that aberrant phase transitions within liquid- like compartments lie at the heart of ALS and, presumably, other age-related diseases.

1,988 citations

Journal ArticleDOI
26 Jul 2018-Cell
TL;DR: A model is developed to show that the measured saturation concentrations of phase separation are inversely proportional to the product of the numbers of arginine and tyrosine residues, which suggests it is possible to predict phase-separation properties based on amino acid sequences.

1,219 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Fiji is a distribution of the popular open-source software ImageJ focused on biological-image analysis that facilitates the transformation of new algorithms into ImageJ plugins that can be shared with end users through an integrated update system.
Abstract: Fiji is a distribution of the popular open-source software ImageJ focused on biological-image analysis. Fiji uses modern software engineering practices to combine powerful software libraries with a broad range of scripting languages to enable rapid prototyping of image-processing algorithms. Fiji facilitates the transformation of new algorithms into ImageJ plugins that can be shared with end users through an integrated update system. We propose Fiji as a platform for productive collaboration between computer science and biology research communities.

43,540 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

Proceedings ArticleDOI
22 Jan 2006
TL;DR: Some of the major results in random graphs and some of the more challenging open problems are reviewed, including those related to the WWW.
Abstract: We will review some of the major results in random graphs and some of the more challenging open problems. We will cover algorithmic and structural questions. We will touch on newer models, including those related to the WWW.

7,116 citations

Journal ArticleDOI
23 Jan 1998-Science
TL;DR: Members of the Rho family of small guanosine triphosphatases have emerged as key regulators of the actin cytoskeleton, and through their interaction with multiple target proteins, they ensure coordinated control of other cellular activities such as gene transcription and adhesion.
Abstract: The actin cytoskeleton mediates a variety of essential biological functions in all eukaryotic cells. In addition to providing a structural framework around which cell shape and polarity are defined, its dynamic properties provide the driving force for cells to move and to divide. Understanding the biochemical mechanisms that control the organization of actin is thus a major goal of contemporary cell biology, with implications for health and disease. Members of the Rho family of small guanosine triphosphatases have emerged as key regulators of the actin cytoskeleton, and furthermore, through their interaction with multiple target proteins, they ensure coordinated control of other cellular activities such as gene transcription and adhesion.

5,969 citations