scispace - formally typeset
Search or ask a question
Author

Anthony F Turhollow Jr

Bio: Anthony F Turhollow Jr is an academic researcher from Oak Ridge National Laboratory. The author has contributed to research in topics: Biomass & Corn stover. The author has an hindex of 24, co-authored 38 publications receiving 6265 citations.
Topics: Biomass, Corn stover, Bioenergy, Stover, Energy source

Papers
More filters
ReportDOI
15 Dec 2005
TL;DR: The U.S. Department of Energy and the United States Department of Agriculture have both strongly committed to expanding the role of biomass as an energy source as mentioned in this paper, and they support biomass fuels and products as a way to reduce the need for oil and gas imports; to support the growth of agriculture, forestry, and rural economies; and to foster major new domestic industries making a variety of fuels, chemicals, and other products.
Abstract: The U.S. Department of Energy (DOE) and the U.S. Department of Agriculture (USDA) are both strongly committed to expanding the role of biomass as an energy source. In particular, they support biomass fuels and products as a way to reduce the need for oil and gas imports; to support the growth of agriculture, forestry, and rural economies; and to foster major new domestic industries--biorefineries--making a variety of fuels, chemicals, and other products. As part of this effort, the Biomass R&D Technical Advisory Committee, a panel established by the Congress to guide the future direction of federally funded biomass R&D, envisioned a 30 percent replacement of the current U.S. petroleum consumption with biofuels by 2030. Biomass--all plant and plant-derived materials including animal manure, not just starch, sugar, oil crops already used for food and energy--has great potential to provide renewable energy for America's future. Biomass recently surpassed hydropower as the largest domestic source of renewable energy and currently provides over 3 percent of the total energy consumption in the United States. In addition to the many benefits common to renewable energy, biomass is particularly attractive because it is the only current renewable source of liquid transportation fuel. This, of course, makes it invaluable in reducing oil imports--one of our most pressing energy needs. A key question, however, is how large a role could biomass play in responding to the nation's energy demands. Assuming that economic and financial policies and advances in conversion technologies make biomass fuels and products more economically viable, could the biorefinery industry be large enough to have a significant impact on energy supply and oil imports? Any and all contributions are certainly needed, but would the biomass potential be sufficiently large to justify the necessary capital replacements in the fuels and automobile sectors? The purpose of this report is to determine whether the land resources of the United States are capable of producing a sustainable supply of biomass sufficient to displace 30 percent or more of the country's present petroleum consumption--the goal set by the Advisory Committee in their vision for biomass technologies. Accomplishing this goal would require approximately 1 billion dry tons of biomass feedstock per year.

2,637 citations

ReportDOI
01 Aug 2011
TL;DR: The report, Biomass as feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply (generally referred to as the 2005 BTS), was an estimate of “potential” biomass within the contiguous United States based on numerous assumptions about current and future inventory and production capacity, availability, and technology as mentioned in this paper.
Abstract: The Report, Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply (generally referred to as the Billion-Ton Study or 2005 BTS), was an estimate of “potential” biomass within the contiguous United States based on numerous assumptions about current and future inventory and production capacity, availability, and technology. In the 2005 BTS, a strategic analysis was undertaken to determine if U.S. agriculture and forest resources have the capability to potentially produce at least one billion dry tons of biomass annually, in a sustainable manner—enough to displace approximately 30% of the country’s present petroleum consumption. To ensure reasonable confidence in the study results, an effort was made to use relatively conservative assumptions. However, for both agriculture and forestry, the resource potential was not restricted by price. That is, all identified biomass was potentially available, even though some potential feedstock would more than likely be too expensive to actually be economically available. In addition to updating the 2005 study, this report attempts to address a number of its shortcomings

1,144 citations

Journal ArticleDOI
TL;DR: In this article, the authors describe the framework development of a dynamic integrated biomass supply analysis and logistics model (IBSAL) to simulate the collection, storage, and transport operations for supplying agricultural biomass to a biorefinery.
Abstract: This paper describes the framework development of a dynamic integrated biomass supply analysis and logistics model (IBSAL) to simulate the collection, storage, and transport operations for supplying agricultural biomass to a biorefinery. The model consists of time dependent events representing the working rate of equipment and queues representing the capacity of storage structures. The discrete event and queues are inter-connected to represent the entire network of material flow from field to a biorefinery. Weather conditions including rain and snow influence the moisture content and the dry matter loss of biomass through the supply chain and are included in the model. The model is developed using an object oriented high level simulation language EXTEND™. A case of corn stover collection and transport scenario using baling system is described.

382 citations

Journal ArticleDOI
TL;DR: In this article, an economic analysis of a biomass pelleting process was performed for conditions in North America, and the cost of the process was analyzed for a base case plant capacity of 6 t/h, where the average cost was about $51/t of pellets.
Abstract: An engineering economic analysis of a biomass pelleting process was performed for conditions in North America. The pelletization of biomass consists of a series of unit operations: drying, size reduction, densifying, cooling, screening, and warehousing. Capital and operating cost of the pelleting plant was estimated at several plant capacities. Pellet production cost for a base case plant capacity of 6 t/h was about $51/t of pellets. Raw material cost was the largest cost element of the total pellet production cost followed by personnel cost, drying cost, and pelleting mill cost. An increase in raw material cost substantially increased the pellet production cost. Pellet plants with a capacity of more than 10 t/h decreased the costs to roughly $40/t of pellets. Five different burner fuels – wet sawdust, dry sawdust, biomass pellets, natural gas, and coal were tested for their effect on the cost of pellet production. Wet sawdust and coal, the cheapest burner fuels, produced the lowest pellet production cost. The environmental impacts due to the potential emissions of these fuels during the combustion process require further investigation.

327 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a review of current and future potential technologies for production, harvest, storage, and trans- portation of switchgrass. But they do not consider the use of feed stocks.
Abstract: Switchgrass (Panicum virgatum L.) is a promising cellulosic biomass feedstock for biorefi neries and biofuel production. This paper reviews current and future potential technologies for production, harvest, storage, and trans- portation of switchgrass. Our analysis indicates that for a yield of 10 Mg ha -1 , the current cost of producing switch- grass (after establishment) is about $41.50 Mg -1 . The costs may be reduced to about half this if the yield is increased to 30 Mg ha -1 through genetic improvement, intensive crop management, and/or optimized inputs. At a yield of 10 Mg ha -1 , we estimate that harvesting costs range from $23.72 Mg -1 for current baling technology to less than $16 Mg -1 when using a loafi ng collection system. At yields of 20 and 30 Mg ha -1 with an improved loafi ng system, harvesting costs are even lower at $12.75 Mg -1 and $9.59 Mg -1 , respectively. Transport costs vary depending upon yield and fraction of land under switchgrass, bulk density of biomass, and total annual demand of a biorefi nery. For a 2000 Mg d -1 plant and an annual yield of 10 Mg ha -1 , the transport cost is an estimated $15.42 Mg -1 , assuming 25% of the land is under switchgrass production. Total delivered cost of switchgrass using current baling technology is $80.64 Mg -1 , requiring an energy input of 8.5% of the feedstock higher heating value (HHV). With mature techno- logy, for example, a large, loaf-collection system, the total delivered cost is reduced to about $71.16 Mg -1 with 7.8% of the feedstock HHV required as input. Further cost reduction can be achieved by combining mature technology

264 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Hydrogen Production by Water−Gas Shift Reaction 4056 4.1.
Abstract: 1.0. Introduction 4044 2.0. Biomass Chemistry and Growth Rates 4047 2.1. Lignocellulose and Starch-Based Plants 4047 2.2. Triglyceride-Producing Plants 4049 2.3. Algae 4050 2.4. Terpenes and Rubber-Producing Plants 4052 3.0. Biomass Gasification 4052 3.1. Gasification Chemistry 4052 3.2. Gasification Reactors 4054 3.3. Supercritical Gasification 4054 3.4. Solar Gasification 4055 3.5. Gas Conditioning 4055 4.0. Syn-Gas Utilization 4056 4.1. Hydrogen Production by Water−Gas Shift Reaction 4056

7,067 citations

Journal ArticleDOI
27 Jan 2006-Science
TL;DR: The integration of agroenergy crops and biorefinery manufacturing technologies offers the potential for the development of sustainable biopower and biomaterials that will lead to a new manufacturing paradigm.
Abstract: Biomass represents an abundant carbon-neutral renewable resource for the production of bioenergy and biomaterials, and its enhanced use would address several societal needs. Advances in genetics, biotechnology, process chemistry, and engineering are leading to a new manufacturing concept for converting renewable biomass to valuable fuels and products, generally referred to as the biorefinery. The integration of agroenergy crops and biorefinery manufacturing technologies offers the potential for the development of sustainable biopower and biomaterials that will lead to a new manufacturing paradigm.

5,344 citations

Journal ArticleDOI
29 Feb 2008-Science
TL;DR: This article found that corn-based ethanol, instead of producing a 20% savings, nearly doubled greenhouse emissions over 30 years and increased greenhouse gases for 167 years, by using a worldwide agricultural model to estimate emissions from land-use change.
Abstract: Most prior studies have found that substituting biofuels for gasoline will reduce greenhouse gases because biofuels sequester carbon through the growth of the feedstock. These analyses have failed to count the carbon emissions that occur as farmers worldwide respond to higher prices and convert forest and grassland to new cropland to replace the grain (or cropland) diverted to biofuels. By using a worldwide agricultural model to estimate emissions from land-use change, we found that corn-based ethanol, instead of producing a 20% savings, nearly doubles greenhouse emissions over 30 years and increases greenhouse gases for 167 years. Biofuels from switchgrass, if grown on U.S. corn lands, increase emissions by 50%. This result raises concerns about large biofuel mandates and highlights the value of using waste products.

4,696 citations

Journal ArticleDOI
09 Feb 2007-Science
TL;DR: Here, the natural resistance of plant cell walls to microbial and enzymatic deconstruction is considered, collectively known as “biomass recalcitrance,” which is largely responsible for the high cost of lignocellulose conversion.
Abstract: Lignocellulosic biomass has long been recognized as a potential sustainable source of mixed sugars for fermentation to biofuels and other biomaterials. Several technologies have been developed during the past 80 years that allow this conversion process to occur, and the clear objective now is to make this process cost-competitive in today's markets. Here, we consider the natural resistance of plant cell walls to microbial and enzymatic deconstruction, collectively known as "biomass recalcitrance." It is this property of plants that is largely responsible for the high cost of lignocellulose conversion. To achieve sustainable energy production, it will be necessary to overcome the chemical and structural properties that have evolved in biomass to prevent its disassembly.

4,035 citations

Journal ArticleDOI
29 Feb 2008-Science
TL;DR: Converting rainforests, peatlands, savannas, or grasslands to produce food crop–based biofuels in Brazil, Southeast Asia, and the United States creates a “biofuel carbon debt” by releasing 17 to 420 times more CO2 than the annual greenhouse gas reductions that these biofuel reductions would provide by displacing fossil fuels.
Abstract: Increasing energy use, climate change, and carbon dioxide (CO2) emissions from fossil fuels make switching to lowcarbon fuels a high priority. Biofuels are a potential lowcarbon energy source, but whether biofuels offer carbon savings depends on how they are produced. Converting rainforests, peatlands, savannas, or grasslands to produce food-based biofuels in Brazil, Southeast Asia, and the United States creates a ‘biofuel carbon debt’ by releasing 17 to 420 times more CO2 than the annual greenhouse gas (GHG) reductions these biofuels provide by displacing fossil fuels. In contrast, biofuels made from waste biomass or from biomass grown on abandoned agricultural lands planted with perennials incur little or no carbon debt and offer immediate and sustained GHG advantages. Demand for alternatives to petroleum is increasing the production of biofuels from food crops such as corn, sugarcane, soybeans and palms. As a result, land in

3,856 citations