scispace - formally typeset
Search or ask a question
Author

Anthony Fow

Bio: Anthony Fow is an academic researcher. The author has contributed to research in topics: Pollution & Contamination. The author has an hindex of 2, co-authored 2 publications receiving 5 citations.

Papers
More filters
Journal ArticleDOI
18 Aug 2021-Water
TL;DR: In this paper, the quality of sediment and surface water in two natural wetlands, Paca and Tragadero, in the central region of Peru was evaluated using pollution indices, including the geoaccumulation index, pollutant load index, modified pollution degree, potential ecological risk index, and site rank index, for four heavy metals.
Abstract: In this study, the quality of sediment and surface water in two natural wetlands, Paca and Tragadero, in the central region of Peru was evaluated using pollution indices, including the geoaccumulation index, pollutant load index, modified pollution degree, potential ecological risk index, and site rank index, for four heavy metals. Principal component analysis was used to identify potential metal contaminant sources. The determination of Fe, Zn, Pb, and As was performed by flame atomic absorption spectrophotometry. The average concentrations of metals in the sediments of both lagoons decreased in the order Fe > Zn > Pb > As. The analysis of the contamination indices determined that As and Pb are the elements that contribute the most to environmental degradation in both wetlands. There is a strong correlation between the values of potential ecological risk and the modified degree of contamination, revealing that the Paca wetland has a moderate degree of contamination and potential ecological risk, while Tragadero presents a high degree of contamination and considerable potential ecological risk. The application of the site rank index showed that more than 50% of the sampling sites have between high and severe contamination. The principal component analysis presented 79.2% of the total variance. Finally, the results of this study are essential in order to carry out preventive actions for environmental protection in these lake ecosystems of great importance for many activities, such as bird watching.

12 citations

Journal ArticleDOI
TL;DR: In this article, the authors evaluated surface sediment quality of potential rivers in Peru using indicators of contamination, accumulation and ecological risk of heavy metals and As and revealed the applicability of the evaluation indexes of toxic metals so that special control measures can be adopted.
Abstract: Surface sediment quality of potential rivers in Peru was evaluated using indicators of contamination, accumulation and ecological risk of heavy metals and As. Surface sediment samples were collected at 54 sampling sites in the Tishgo and Chia rivers during 2018. The determination of Cu, Pb, Zn and As was performed by flame atomic absorption spectrophotometry. The results revealed the decreasing order of the mean concentrations of heavy metals and As in the Chia River of Zn > Cu > As > Pb and Tishgo of Zn > Pb > As > Cu. The PLI for the Tishgo River were greater than one (PLI > 1) denoting the deterioration it has been experiencing. In the Chia River, 60% of the sampling sites indicated no appreciable contamination by these elements (PLI < 1). The Igeo values of As in both rivers showed a state of contamination, from moderately to severely contaminated. In the Tishgo River the potential ecological risk varied from low to moderate and in the Chia River from low to considerable. Finally, this study reveals the applicability of the evaluation indexes of contamination, accumulation and potential ecological risk of toxic metals so that special control measures can be adopted.

6 citations

Journal ArticleDOI
TL;DR: Toxic metal contamination, distribution, and risk were evaluated in the sediments of three lagoons used for fish farming in the central region of Peru as mentioned in this paper , where the distribution of toxic metals in the sediment was in the following descending order of Zn > V > Ni > Cu > Pb > As > Cr > Co > Sb.
Abstract: Toxic metal contamination, distribution and risk were evaluated in the sediments of three lagoons used for fish farming in the central region of Peru. The distribution of toxic metals in the sediment was in the following descending order of Zn > V > Ni > Cu > Pb > As > Cr > Co > Cd > Sb. Contamination factor (Cf) and geoaccumulation index (Igeo) values for Co, Cr, Cu, Ni, Pb, Sb, V and Zn indicated low contamination and for Cd moderate contamination. The pollution load index (PLI) ranged from 0.3856 to 0.5622; indicating no appreciable contamination and the modified degree of contamination (mCd) corroborated this result. The potential ecological risk (Ri) in the Tranca Grande and Pomacocha lagoons revealed a low potential ecological risk and in Tipicocha a moderate potential ecological risk. HI values < 1 indicated that non-carcinogenic adverse effects were negligible. In adults, the Total carcinogenic risk (TCR) values for As, Cd, Cr, Ni and Pb were less than 1.00E–04, indicating no significant carcinogenic risk. In children, TCR values showed similar behavior with the exception of As. Therefore, considering that fish production for domestic consumption and export is carried out in these lagoons, it is important to continue monitoring toxic metals to protect the health of these ecosystems and human health.

4 citations


Cited by
More filters
01 Jan 2017
TL;DR: In this article, a weak acid extraction was used to mobilize the loosely bound metals in estuary sediment samples, and more than 30% of Ag, As, Ca, Cd, Co, Cu, Hg, Mn Ni, Pb and Zn were leached from the sediment showing that these metals are significantly present in the bioavailable form.
Abstract: Highlights - Assessment of potential bioavailable metals in estuary sediment - Receptor model was employed for source apportionment. - PROMETHEE was used to rank the sites based on contamination levels. - Enrichment factor based-indices are preferred for complete sediment assessment. Abstract A weak acid extraction was used to mobilize the loosely bound metals in estuary sediment samples. More than 30% of Ag, As, Ca, Cd, Co, Cu, Hg, Mn Ni, Pb and Zn were leached from the sediment showing that these metals are significantly present in the bioavailable form. PCA/APCS identified three sources of the metals, namely: lithogenic accounting for 72%, shipping related contributing 15% and traffic related representing 13% of the total load. Application of pollution index (PI) and modified pollution index (MPI) revealed that the sediment range from unpolluted to heavily polluted while ecological risk index (RI) classifies the sediment as posing low ecological risk modified ecological risk index (MRI) suggests considerable to very high ecological risk. To provide holistic insights into the ecological risks posed by metals, enrichment factor, MPI and MRI are recommended for the assessment of sediment in complex environments such as estuaries.

86 citations

Journal ArticleDOI
TL;DR: In this paper, a comprehensive ecological risk assessment of the transitional space of Guangxi, China was performed using multi-source data and DPSIR model, using a non-dimensional quantitative model for data standardization, and using subjective and objective evaluation methods to assign weights to 18 indicators.

21 citations

Journal ArticleDOI
TL;DR: In this paper , the authors investigated the bacterial and archaeal communities of lake sediments under fish pressure contaminated with heavy metals and found that their microbial communities were different in diversity and composition, determined by the resilience or tolerance of the microbial communities to the heavy metal enrichment gradient.
Abstract: The cumulative effects of anthropogenic stress on freshwater ecosystems are becoming increasingly evident and worrisome. In lake sediments contaminated by heavy metals, the composition and structure of microbial communities can change and affect nutrient transformation and biogeochemical cycling of sediments. In this study, bacterial and archaeal communities of lake sediments under fish pressure contaminated with heavy metals were investigated by the Illumina MiSeq platform. Despite the similar content of most of the heavy metals in the lagoon sediments, we found that their microbial communities were different in diversity and composition. This difference would be determined by the resilience or tolerance of the microbial communities to the heavy metal enrichment gradient. Thirty-two different phyla and 66 different microbial classes were identified in sediment from the three lagoons studied. The highest percentages of contribution in the differentiation of microbial communities were presented by the classes Alphaproteobacteria (19.08%), Cyanophyceae (14.96%), Betaproteobacteria (9.01%) y Actinobacteria (7.55%). The bacteria that predominated in sediments with high levels of Cd and As were Deltaproteobacteria, Actinobacteria, Coriobacteriia, Nitrososphaeria and Acidobacteria (Pomacocha), Alphaproteobacteria, Chitinophagia, Nitrospira and Clostridia (Tipicocha) and Betaproteobacteria (Tranca Grande). Finally, the results allow us to expand the current knowledge of microbial diversity in lake sediments contaminated with heavy metals and to identify bioindicators taxa of environmental quality that can be used in the monitoring and control of heavy metal contamination.

18 citations

Rongyu Li1, X. Shen, Y. H. Li, M. W. Chai, G. Y. Qiu 
14 Dec 2015
TL;DR: The geo-accumulation index, potential ecological risk index and risk assessment code (RAC) demonstrated that heavy metals have posed a considerable ecological risk, especially for cadmium (Cd).
Abstract: Overlying water, sediment, rhizosphere sediment and mangrove seedlings in the Futian mangrove forest were analyzed for heavy metals. The results showed that mangrove plant acidified sediment and increased organic matter contents. Except for chromium (Cr), nickel (Ni) and copper (Cu) in Aegiceras corniculatum sediment, heavy metals in all sediments were higher than in overlying water, rhizosphere sediment and mangrove root. Heavy metals in Avicennia marina sediments were higher than other sediments. The lower heavy metal biological concentration factors (BCFs) and translocation factors (TFs) indicated that mangrove plant adopted exclusion strategy. The geo-accumulation index, potential ecological risk index and risk assessment code (RAC) demonstrated that heavy metals have posed a considerable ecological risk, especially for cadmium (Cd). Heavy metals (Cr, Ni, Cu and Cd) mainly existed in the reducible fractions. These findings provide actual heavy metal accumulations in sediment-plant ecosystems in mangrove forest, being important in designing the long-term management and conservation policies for managers of mangrove forest.

12 citations

Journal ArticleDOI
21 Nov 2021-Water
TL;DR: In this article, the concentration, occurrence, distribution, toxicity and health risk of sixteen priority polycyclic aromatic hydrocarbons (PAHs) were analyzed in the samples.
Abstract: Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental pollutants that possess serious risks to human health and the environment. Forty riverbed sediments samples were collected in mangrove river bed sediments where artisanal refining of crude oil takes place in the Niger Delta of Nigeria. The concentration, occurrence, distribution, toxicity and health risk of sixteen priority PAHs (16PAHs) were analysed in the samples. Apart from Nap, Acy, BkF, InP and DbE, all the other PAHs were present in all the sampled points of the studied area with BbF and BaA recording the highest mean values. The range and mean of the total PAHs (∑16PAHs) of this study are 23.461–89.886 mg/kg and 42.607 ± 14.30 mg/kg dry weight (dw), which is classified as heavily contaminated when compared to the European classification of PAHs pollution in soil (>1.0 mg/kg). The range of the effect range factors used to assess the risk of PAHs in an ecosystem (Effect rang-low (ER-L) and Effect range-median ER-M) of this study is from 0.953 to 8.80 mg/kg. PAHs below ER-L (4.0 mg/kg) indicate no toxic effect, but values above ER-M (44.79 mg/kg) indicate toxic effects to the sediments, its resources and, ultimately, the public that consumes the resources thereof; hence, the study area falls within the contaminated category. The occurrence of the high molecular weight (HMW) PAHs (73.4%) supersedes those of the lower molecular weight (LMW) PAHs (26.6%). The diagnostic ratios and principal component analysis suggest that the main contributors of PAHS into the sediments are the combustion of biomass, fossil fuel (crude oil) and pyrogenic sources. The toxic equivalent quotient (TEQ) and mutagenic equivalent quotient (MEQ) of PAHs ranged from 2.96 to 23.26 mgTEQ/kg dw and 4.47 to 23.52 mgMEQ/kg dw, and the total mean toxic equivalency quotient (∑TEQ) (15.12 ± 8.4 mg/kg) is also greater than the safe level of 0.6 mg/kg, which indicates high toxicity potency. The mean incremental lifetime cancer risks (ILCRs) of human exposure to PAHs shows that both adults TotalILCR adults (6.15 × 10−5) and children TotalILCR children (2.48 × 10−4) can be affected by dermal contact rather than ingestion and inhalation. Based on these findings, the appropriate regulatory bodies and other organs of government in the region should enforce outright stoppage of the activities of these illegal artisans who do not have control mechanisms for loss control at the site and carry out appropriate clean-up of the area.

11 citations