scispace - formally typeset
Search or ask a question
Author

Anthony Gitter

Bio: Anthony Gitter is an academic researcher from Morgridge Institute for Research. The author has contributed to research in topics: Deep learning & Coronavirus. The author has an hindex of 18, co-authored 59 publications receiving 2493 citations. Previous affiliations of Anthony Gitter include University of Wisconsin-Madison & Microsoft.


Papers
More filters
Journal ArticleDOI
TL;DR: It is found that deep learning has yet to revolutionize biomedicine or definitively resolve any of the most pressing challenges in the field, but promising advances have been made on the prior state of the art.
Abstract: Deep learning describes a class of machine learning algorithms that are capable of combining raw inputs into layers of intermediate features. These algorithms have recently shown impressive results across a variety of domains. Biology and medicine are data-rich disciplines, but the data are complex and often ill-understood. Hence, deep learning techniques may be particularly well suited to solve problems of these fields. We examine applications of deep learning to a variety of biomedical problems-patient classification, fundamental biological processes and treatment of patients-and discuss whether deep learning will be able to transform these tasks or if the biomedical sphere poses unique challenges. Following from an extensive literature review, we find that deep learning has yet to revolutionize biomedicine or definitively resolve any of the most pressing challenges in the field, but promising advances have been made on the prior state of the art. Even though improvements over previous baselines have been modest in general, the recent progress indicates that deep learning methods will provide valuable means for speeding up or aiding human investigation. Though progress has been made linking a specific neural network's prediction to input features, understanding how users should interpret these models to make testable hypotheses about the system under study remains an open challenge. Furthermore, the limited amount of labelled data for training presents problems in some domains, as do legal and privacy constraints on work with sensitive health records. Nonetheless, we foresee deep learning enabling changes at both bench and bedside with the potential to transform several areas of biology and medicine.

1,491 citations

Journal ArticleDOI
TL;DR: The basic patterns that have been observed in time-series experiments are discussed, how these patterns are combined to form expression programs, and the computational analysis, visualization and integration of these data to infer models of dynamic biological systems.
Abstract: Biological processes are often dynamic, thus researchers must monitor their activity at multiple time points. The most abundant source of information regarding such dynamic activity is time-series gene expression data. These data are used to identify the complete set of activated genes in a biological process, to infer their rates of change, their order and their causal effects and to model dynamic systems in the cell. In this Review we discuss the basic patterns that have been observed in time-series experiments, how these patterns are combined to form expression programs, and the computational analysis, visualization and integration of these data to infer models of dynamic biological systems.

455 citations

Journal ArticleDOI
TL;DR: Together, these changes improve the ability of DREM 2.0 to accurately recover dynamic regulatory networks and make it much easier to use it for analyzing such networks in several species with varying degrees of interaction information.
Abstract: Modeling dynamic regulatory networks is a major challenge since much of the protein-DNA interaction data available is static. The Dynamic Regulatory Events Miner (DREM) uses a Hidden Markov Model-based approach to integrate this static interaction data with time series gene expression leading to models that can determine when transcription factors (TFs) activate genes and what genes they regulate. DREM has been used successfully in diverse areas of biological research. However, several issues were not addressed by the original version. DREM 2.0 is a comprehensive software for reconstructing dynamic regulatory networks that supports interactive graphical or batch mode. With version 2.0 a set of new features that are unique in comparison with other softwares are introduced. First, we provide static interaction data for additional species. Second, DREM 2.0 now accepts continuous binding values and we added a new method to utilize TF expression levels when searching for dynamic models. Third, we added support for discriminative motif discovery, which is particularly powerful for species with limited experimental interaction data. Finally, we improved the visualization to support the new features. Combined, these changes improve the ability of DREM 2.0 to accurately recover dynamic regulatory networks and make it much easier to use it for analyzing such networks in several species with varying degrees of interaction information. DREM 2.0 provides a unique framework for constructing and visualizing dynamic regulatory networks. DREM 2.0 can be downloaded from: http://www.sb.cs.cmu.edu/drem .

131 citations

Journal ArticleDOI
TL;DR: Omics Integrator as discussed by the authors is a software package that takes a variety of 'omic' data as input and identifies putative underlying molecular pathways by applying advanced network optimization algorithms to a network of thousands of molecular interactions to find high-confidence, interpretable subnetworks that best explain the data.
Abstract: High-throughput, 'omic' methods provide sensitive measures of biological responses to perturbations. However, inherent biases in high-throughput assays make it difficult to interpret experiments in which more than one type of data is collected. In this work, we introduce Omics Integrator, a software package that takes a variety of 'omic' data as input and identifies putative underlying molecular pathways. The approach applies advanced network optimization algorithms to a network of thousands of molecular interactions to find high-confidence, interpretable subnetworks that best explain the data. These subnetworks connect changes observed in gene expression, protein abundance or other global assays to proteins that may not have been measured in the screens due to inherent bias or noise in measurement. This approach reveals unannotated molecular pathways that would not be detectable by searching pathway databases. Omics Integrator also provides an elegant framework to incorporate not only positive data, but also negative evidence. Incorporating negative evidence allows Omics Integrator to avoid unexpressed genes and avoid being biased toward highly-studied hub proteins, except when they are strongly implicated by the data. The software is comprised of two individual tools, Garnet and Forest, that can be run together or independently to allow a user to perform advanced integration of multiple types of high-throughput data as well as create condition-specific subnetworks of protein interactions that best connect the observed changes in various datasets. It is available at http://fraenkel.mit.edu/omicsintegrator and on GitHub at https://github.com/fraenkel-lab/OmicsIntegrator.

122 citations

Journal ArticleDOI
TL;DR: This work formalizes the orientation problem in weighted protein interaction graphs as an optimization problem and presents three approximation algorithms based on either weighted Boolean satisfiability solvers or probabilistic assignments that are used to identify pathways in yeast.
Abstract: Modern experimental technology enables the identification of the sensory proteins that interact with the cells' environment or various pathogens. Expression and knockdown studies can determine the downstream effects of these interactions. However, when attempting to reconstruct the signaling networks and pathways between these sources and targets, one faces a substantial challenge. Although pathways are directed, high-throughput protein interaction data are undirected. In order to utilize the available data, we need methods that can orient protein interaction edges and discover high-confidence pathways that explain the observed experimental outcomes. We formalize the orientation problem in weighted protein interaction graphs as an optimization problem and present three approximation algorithms based on either weighted Boolean satisfiability solvers or probabilistic assignments. We use these algorithms to identify pathways in yeast. Our approach recovers twice as many known signaling cascades as a recent unoriented signaling pathway prediction technique and over 13 times as many as an existing network orientation algorithm. The discovered paths match several known signaling pathways and suggest new mechanisms that are not currently present in signaling databases. For some pathways, including the pheromone signaling pathway and the high-osmolarity glycerol pathway, our method suggests interesting and novel components that extend current annotations.

113 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

01 Jan 2002

9,314 citations

01 Aug 2000
TL;DR: Assessment of medical technology in the context of commercialization with Bioentrepreneur course, which addresses many issues unique to biomedical products.
Abstract: BIOE 402. Medical Technology Assessment. 2 or 3 hours. Bioentrepreneur course. Assessment of medical technology in the context of commercialization. Objectives, competition, market share, funding, pricing, manufacturing, growth, and intellectual property; many issues unique to biomedical products. Course Information: 2 undergraduate hours. 3 graduate hours. Prerequisite(s): Junior standing or above and consent of the instructor.

4,833 citations

01 Feb 2015
TL;DR: In this article, the authors describe the integrative analysis of 111 reference human epigenomes generated as part of the NIH Roadmap Epigenomics Consortium, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression.
Abstract: The reference human genome sequence set the stage for studies of genetic variation and its association with human disease, but epigenomic studies lack a similar reference. To address this need, the NIH Roadmap Epigenomics Consortium generated the largest collection so far of human epigenomes for primary cells and tissues. Here we describe the integrative analysis of 111 reference human epigenomes generated as part of the programme, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression. We establish global maps of regulatory elements, define regulatory modules of coordinated activity, and their likely activators and repressors. We show that disease- and trait-associated genetic variants are enriched in tissue-specific epigenomic marks, revealing biologically relevant cell types for diverse human traits, and providing a resource for interpreting the molecular basis of human disease. Our results demonstrate the central role of epigenomic information for understanding gene regulation, cellular differentiation and human disease.

4,409 citations