scispace - formally typeset
Search or ask a question
Author

Anthony J. Robinson

Other affiliations: Medical Research Council
Bio: Anthony J. Robinson is an academic researcher from University of Otago. The author has contributed to research in topics: Virus & Parapoxvirus. The author has an hindex of 17, co-authored 23 publications receiving 1045 citations. Previous affiliations of Anthony J. Robinson include Medical Research Council.

Papers
More filters
Journal ArticleDOI
TL;DR: A gene encoding a polypeptide with homology to mammalian vascular endothelial growth factors (VEGFs) has been discovered in the genome of orf virus (OV), a parapoxvirus that affects sheep and goats and, occasionally, humans.
Abstract: A gene encoding a polypeptide with homology to mammalian vascular endothelial growth factors (VEGFs) has been discovered in the genome of orf virus (OV), a parapoxvirus that affects sheep and goats and, occasionally, humans. The gene is transcribed abundantly early in infection and is found immediately outside the inverted terminal repeat at the right end of the genome. In the NZ2 strain of OV (OV NZ2), the gene encodes a polypeptide with a molecular size of 14.7 kDa, while in another strain, OV NZ7, there is a variant gene that encodes a polypeptide of 16 kDa. The OV NZ2 and OV NZ7 polypeptides show 22 to 27% and 16 to 23% identity, respectively, to the mammalian VEGFs. The viral polypeptides are only 41.1% identical to each other, and there is little homology between the two genes at the nucleotide level. Another unusual feature of these genes is their G+C content, particularly that of OV NZ7. In a genome that is otherwise 63% G+C, the OV NZ2 gene is 57.2% G+C and the OV NZ7 gene is 39.7% G+C. The OV NZ2 gene, but not the OV NZ7 gene, is homologous to the mammalian VEGF genes at the DNA level, suggesting that the gene has been acquired from a mammalian host and is undergoing genetic drift. The lesions induced in sheep and humans after infection with OV show extensive dermal vascular endothelial proliferation and dilatation, and it is likely that this is a direct effect of the expression of the VEGF-like gene.

338 citations

Journal ArticleDOI
01 Aug 1994-Virology
TL;DR: These assays demonstrated that OV p42K is one of a limited number of OV proteins to which sheep mount a strong antibody response and which stimulate lymphocytes derived from draining lymph nodes following a natural infection with OV NZ2.

108 citations

Journal ArticleDOI
20 Apr 1995-Virology
TL;DR: The results indicate that the genome of DPV is as different from the genomes of the three accepted members of the genus as the latter are from each other and argue for the inclusion of DPv as a new member of the parapoxvirus genus.

68 citations

Journal ArticleDOI
01 Mar 1987-Virology
TL;DR: A map of cleavage sites for the restriction endonucleases EcoRI, HindIII, BamHI, HpaI, and KpnI for a New Zealand strain of orf virus (NZ2) DNA has been deduced.

67 citations

Journal ArticleDOI
01 Jul 1993-Virology
TL;DR: The OV ORFs are arranged on the genome in an almost identical manner to their VAC counterparts revealing the common evolutionary origin of the two viruses despite the extreme difference in their G+C content.

60 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The establishment of a vascular supply is required for organ development and differentiation as well as for tissue repair and reproductive functions in the adult.
Abstract: The establishment of a vascular supply is required for organ development and differentiation as well as for tissue repair and reproductive functions in the adult1 Neovascularization (angiogenesis) is also implicated in the pathogenesis of a number of disorders These include: proliferative retinopathies, age-related macular degeneration, tumors, rheumatoid arthritis, and psoriasis1,2 A strong correlation has been noted between density of microvessels in primary breast cancers and their nodal metastases and patient survival3 Similarly, a correlation has been reported between vascularity and invasive behavior in several other tumors4–6

4,603 citations

Journal ArticleDOI
Napoleone Ferrara1
TL;DR: Vascular endothelial growth factor (VEGF) is an endothelial cell-specific mitogen in vitro and an angiogenic inducer in a variety of in vivo models and is implicated in intraocular neovascularization associated with diabetic retinopathy and age-related macular degeneration.
Abstract: Vascular endothelial growth factor (VEGF) is an endothelial cell-specific mitogen in vitro and an angiogenic inducer in a variety of in vivo models. Hypoxia has been shown to be a major inducer of VEGF gene transcription. The tyrosine kinases Flt-1 (VEGFR-1) and Flk-1/KDR (VEGFR-2) are high-affinity VEGF receptors. The role of VEGF in developmental angiogenesis is emphasized by the finding that loss of a single VEGF allele results in defective vascularization and early embryonic lethality. VEGF is critical also for reproductive and bone angiogenesis. Substantial evidence also implicates VEGF as a mediator of pathological angiogenesis. In situ hybridization studies demonstrate expression of VEGF mRNA in the majority of human tumors. Anti-VEGF monoclonal antibodies and other VEGF inhibitors block the growth of several tumor cell lines in nude mice. Clinical trials with various VEGF inhibitors in a variety of malignancies are ongoing. Very recently, an anti-VEGF monoclonal antibody (bevacizumab; Avastin) has been approved by the Food and Drug Administration as a first-line treatment for metastatic colorectal cancer in combination with chemotherapy. Furthermore, VEGF is implicated in intraocular neovascularization associated with diabetic retinopathy and age-related macular degeneration.

3,414 citations

Journal ArticleDOI
Napoleone Ferrara1
TL;DR: Current evidence indicates that VEGF is essential for embryonic vasculogenesis and angiogenesis, and both therapeuticAngiogenesis using recombinant V EGF or VEGFs gene transfer and inhibition of VEGf-mediated pathological angiogenic are being pursued.
Abstract: Vascular endothelial growth factor (VEGF) is a fundamental regulator of normal and abnormal angiogenesis. Recent evidence indicates that VEGF is essential for embryonic vasculogenesis and angiogenesis. Furthermore, VEGF is required for the cyclical blood vessel proliferation in the female reproductive tract and for longitudinal bone growth and endochondral bone formation. Substantial experimental evidence also implicates VEGF in pathological angiogenesis. Anti-VEGF monoclonal antibodies or other VEGF inhibitors block the growth of many tumor cell lines in nude mice. Furthermore, the concentrations of VEGF are elevated in the aqueous and vitreous humors of patients with proliferative retinopathies such as the diabetic retinopathy. In addition, VEGF-induced angiogenesis results in a therapeutic benefit in several animal models of myocardial or limb ischemia. Currently, both therapeutic angiogenesis using recombinant VEGF or VEGF gene transfer and inhibition of VEGF-mediated pathological angiogenesis are being pursued.

1,206 citations

Journal ArticleDOI
TL;DR: There is an urgent need for a new comprehensive treatment strategy combining antiangiogenic agents with conventional cytoreductive treatments in the control of cancer.
Abstract: New growth in the vascular network is important since the proliferation, as well as metastatic spread, of cancer cells depends on an adequate supply of oxygen and nutrients and the removal of waste products. New blood and lymphatic vessels form through processes called angiogenesis and lymphangiogenesis, respectively. Angiogenesis is regulated by both activator and inhibitor molecules. More than a dozen different proteins have been identified as angiogenic activators and inhibitors. Levels of expression of angiogenic factors reflect the aggressiveness of tumor cells. The discovery of angiogenic inhibitors should help to reduce both morbidity and mortality from carcinomas. Thousands of patients have received antiangiogenic therapy to date. Despite their theoretical efficacy, antiangiogeic treatments have not proved beneficial in terms of long-term survival. There is an urgent need for a new comprehensive treatment strategy combining antiangiogenic agents with conventional cytoreductive treatments in the control of cancer.

1,075 citations

Journal ArticleDOI
Napoleone Ferrara1
TL;DR: Evidence accumulating over the last decade has established the fundamental role of vascular endothelial growth factor (VEGF) as a key regulator of normal and abnormal angiogenesis, and numerous clinical trials are presently testing the hypothesis that inhibition of VEGF may have therapeutic value.
Abstract: Evidence accumulating over the last decade has established the fundamental role of vascular endothelial growth factor (VEGF) as a key regulator of normal and abnormal angiogenesis. The biological effects of VEGF are mediated by two tyrosine kinase receptors, Flt-1 (VEGFR-1) and KDR (VEGFR-2). The signaling and biological properties of these two receptors are strikingly different. VEGF is essential for early development of the vasculature to the extent that inactivation of even a single allele of the VEGF gene results in embryonic lethality. VEGF is also required for female reproductive functions and endochondral bone formation. Substantial evidence also implicates VEGF as an angiogenic mediator in tumors and intraocular neovascular syndromes, and numerous clinical trials are presently testing the hypothesis that inhibition of VEGF may have therapeutic value.

1,060 citations