scispace - formally typeset
Search or ask a question
Author

Anthony Richardella

Bio: Anthony Richardella is an academic researcher from SRA International. The author has contributed to research in topics: Kernel method & Support vector machine. The author has an hindex of 2, co-authored 2 publications receiving 1642 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: This work introduces kernels defined over shallow parse representations of text, and design efficient algorithms for computing the kernels, and uses the devised kernels in conjunction with Support Vector Machine and Voted Perceptron learning algorithms for the task of extracting person-affiliation and organization-location relations from text.
Abstract: We present an application of kernel methods to extracting relations from unstructured natural language sources. We introduce kernels defined over shallow parse representations of text, and design efficient algorithms for computing the kernels. We use the devised kernels in conjunction with Support Vector Machine and Voted Perceptron learning algorithms for the task of extracting person-affiliation and organization-location relations from text. We experimentally evaluate the proposed methods and compare them with feature-based learning algorithms, with promising results.

916 citations

Proceedings ArticleDOI
06 Jul 2002
TL;DR: This work introduces kernels defined over shallow parse representations of text, and design efficient algorithms for computing the kernels, and uses the devised kernels in conjunction with Support Vector Machine and Voted Perceptron learning algorithms for the task of extracting person-affiliation and organization-location relations from text.
Abstract: We present an application of kernel methods to extracting relations from unstructured natural language sources. We introduce kernels defined over shallow parse representations of text, and design efficient algorithms for computing the kernels. We use the devised kernels in conjunction with Support Vector Machine and Voted Perceptron learning algorithms for the task of extracting person-affiliation and organization-location relations from text. We experimentally evaluate the proposed methods and compare them with feature-based learning algorithms, with promising results.

821 citations


Cited by
More filters
Proceedings Article
06 Jan 2007
TL;DR: Open Information Extraction (OIE) as mentioned in this paper is a new extraction paradigm where the system makes a single data-driven pass over its corpus and extracts a large set of relational tuples without requiring any human input.
Abstract: Traditionally, Information Extraction (IE) has focused on satisfying precise, narrow, pre-specified requests from small homogeneous corpora (e.g., extract the location and time of seminars from a set of announcements). Shifting to a new domain requires the user to name the target relations and to manually create new extraction rules or hand-tag new training examples. This manual labor scales linearly with the number of target relations. This paper introduces Open IE (OIE), a new extraction paradigm where the system makes a single data-driven pass over its corpus and extracts a large set of relational tuples without requiring any human input. The paper also introduces TEXTRUNNER, a fully implemented, highly scalable OIE system where the tuples are assigned a probability and indexed to support efficient extraction and exploration via user queries. We report on experiments over a 9,000,000 Web page corpus that compare TEXTRUNNER with KNOWITALL, a state-of-the-art Web IE system. TEXTRUNNER achieves an error reduction of 33% on a comparable set of extractions. Furthermore, in the amount of time it takes KNOWITALL to perform extraction for a handful of pre-specified relations, TEXTRUNNER extracts a far broader set of facts reflecting orders of magnitude more relations, discovered on the fly. We report statistics on TEXTRUNNER's 11,000,000 highest probability tuples, and show that they contain over 1,000,000 concrete facts and over 6,500,000 more abstract assertions.

1,574 citations

Proceedings Article
Daojian Zeng1, Kang Liu1, Siwei Lai1, Guangyou Zhou1, Jun Zhao1 
01 Aug 2014
TL;DR: This paper exploits a convolutional deep neural network (DNN) to extract lexical and sentence level features from the output of pre-existing natural language processing systems and significantly outperforms the state-of-the-art methods.
Abstract: The state-of-the-art methods used for relation classification are primarily based on statistical machine learning, and their performance strongly depends on the quality of the extracted features. The extracted features are often derived from the output of pre-existing natural language processing (NLP) systems, which leads to the propagation of the errors in the existing tools and hinders the performance of these systems. In this paper, we exploit a convolutional deep neural network (DNN) to extract lexical and sentence level features. Our method takes all of the word tokens as input without complicated pre-processing. First, the word tokens are transformed to vectors by looking up word embeddings 1 . Then, lexical level features are extracted according to the given nouns. Meanwhile, sentence level features are learned using a convolutional approach. These two level features are concatenated to form the final extracted feature vector. Finally, the features are fed into a softmax classifier to predict the relationship between two marked nouns. The experimental results demonstrate that our approach significantly outperforms the state-of-the-art methods.

1,496 citations

Book ChapterDOI
20 Sep 2010
TL;DR: A novel approach to distant supervision that can alleviate the problem of noisy patterns that hurt precision by using a factor graph and applying constraint-driven semi-supervision to train this model without any knowledge about which sentences express the relations in the authors' training KB.
Abstract: Several recent works on relation extraction have been applying the distant supervision paradigm: instead of relying on annotated text to learn how to predict relations, they employ existing knowledge bases (KBs) as source of supervision. Crucially, these approaches are trained based on the assumption that each sentence which mentions the two related entities is an expression of the given relation. Here we argue that this leads to noisy patterns that hurt precision, in particular if the knowledge base is not directly related to the text we are working with. We present a novel approach to distant supervision that can alleviate this problem based on the following two ideas: First, we use a factor graph to explicitly model the decision whether two entities are related, and the decision whether this relation is mentioned in a given sentence; second, we apply constraint-driven semi-supervision to train this model without any knowledge about which sentences express the relations in our training KB. We apply our approach to extract relations from the New York Times corpus and use Freebase as knowledge base. When compared to a state-of-the-art approach for relation extraction under distant supervision, we achieve 31% error reduction.

1,304 citations

Proceedings ArticleDOI
05 Jan 2016
TL;DR: A novel end-to-end neural model to extract entities and relations between them and compares favorably to the state-of-the-art CNN based model (in F1-score) on nominal relation classification (SemEval-2010 Task 8).
Abstract: We present a novel end-to-end neural model to extract entities and relations between them. Our recurrent neural network based model captures both word sequence and dependency tree substructure information by stacking bidirectional treestructured LSTM-RNNs on bidirectional sequential LSTM-RNNs. This allows our model to jointly represent both entities and relations with shared parameters in a single model. We further encourage detection of entities during training and use of entity information in relation extraction via entity pretraining and scheduled sampling. Our model improves over the stateof-the-art feature-based model on end-toend relation extraction, achieving 12.1% and 5.7% relative error reductions in F1score on ACE2005 and ACE2004, respectively. We also show that our LSTMRNN based model compares favorably to the state-of-the-art CNN based model (in F1-score) on nominal relation classification (SemEval-2010 Task 8). Finally, we present an extensive ablation analysis of several model components.

1,088 citations

Proceedings ArticleDOI
01 Sep 2015
TL;DR: This paper proposes a novel model dubbed the Piecewise Convolutional Neural Networks (PCNNs) with multi-instance learning to address the problem of wrong label problem when using distant supervision for relation extraction and adopts convolutional architecture with piecewise max pooling to automatically learn relevant features.
Abstract: Two problems arise when using distant supervision for relation extraction. First, in this method, an already existing knowledge base is heuristically aligned to texts, and the alignment results are treated as labeled data. However, the heuristic alignment can fail, resulting in wrong label problem. In addition, in previous approaches, statistical models have typically been applied to ad hoc features. The noise that originates from the feature extraction process can cause poor performance. In this paper, we propose a novel model dubbed the Piecewise Convolutional Neural Networks (PCNNs) with multi-instance learning to address these two problems. To solve the first problem, distant supervised relation extraction is treated as a multi-instance problem in which the uncertainty of instance labels is taken into account. To address the latter problem, we avoid feature engineering and instead adopt convolutional architecture with piecewise max pooling to automatically learn relevant features. Experiments show that our method is effective and outperforms several competitive baseline methods.

1,059 citations