scispace - formally typeset
Search or ask a question
Author

Anthony V. Carrano

Bio: Anthony V. Carrano is an academic researcher from Lawrence Livermore National Laboratory. The author has contributed to research in topics: Sister chromatid exchange & Chromosome. The author has an hindex of 52, co-authored 121 publications receiving 8538 citations. Previous affiliations of Anthony V. Carrano include University of California & Joint Genome Institute.


Papers
More filters
Journal ArticleDOI
TL;DR: The data support the concept that SCEs provide a useful indication of exposure, although the mechanism and biological significance of SCE formation still remain to be elucidated.
Abstract: This paper reviews the ability of a number of chemicals to induce sister-chromatid exchanges (SCEs). The SCE data for animal cells in vivo and in vitro, and human cells in vitro are presented in 6 tables according to their relative effectiveness. A seventh table summarizes what is known about the effects of specific chemicals on SCEs for humans exposed in vivo. The data support the concept that SCEs provide a useful indication of exposure, although the mechanism and biological significance of SCE formation still remain to be elucidated.

576 citations

Journal ArticleDOI
09 Feb 1978-Nature
TL;DR: This work has begun to examine the relation between SCEs and mutations in Chinese hamster ovary (CHO) cells by quantifying the induction of S CEs in parallel withThe induction of mutations producing 8-azaguanine resistance, that is, mutations predominately at the hypoxanthine phosphoribosyltransferase, hprt, locus.
Abstract: SISTER chromatid exchange (SCE), that is, the reciprocal interchange of DNA between chromatids, is easily visualised in metaphase chromosomes1,2 and has been applied to study chromosome structure3,4, chromosome damage5, and instability and DNA repair deficiency syndromes6–9. Since SCEs can be induced by subtoxic doses of carcinogens and mutagens5,10–13, their analysis offers the possibility of a rapid, sensitive and quantitative assay for genetic damage. We have begun to examine the relation between SCEs and mutations in Chinese hamster ovary (CHO) cells by quantifying the induction of SCEs in parallel with the induction of mutations producing 8-azaguanine resistance, that is, mutations predominately at the hypoxanthine phosphoribosyltransferase, hprt, locus. Since the conversion of a chemically induced DNA lesion to a SCE or mutation may depend on the nature of that lesion, we tested four chemicals that differ in their interaction with DNA—ethyl methanesulphonate (EMS; O6: N7 guanyl alkylation ratio14 of 0.03), N-ethyl-N-nitrosourea (ENU; O6: N7 guanyl alkylation ratio15 of about 0.35), the crosslinking agent mitomycin C (MMC)16 and the intercalator proflavine sulphate (PRO)17. Our results indicate a linear relation between induced SCEs and mutations. The relative efficiency, however, is different for each chemical.

494 citations

Journal ArticleDOI
TL;DR: The cloning and function of the human XRCC1 gene is described, which is the first mammalian gene isolated that affects cellular sensitivity to ionizing radiation and appears to be missing approximately 100 bp of transcribed sequence, including 26 nucleotides of coding sequence.
Abstract: We describe the cloning and function of the human XRCC1 gene, which is the first mammalian gene isolated that affects cellular sensitivity to ionizing radiation. The CHO mutant EM9 has 10-fold-higher sensitivity to ethyl methanesulfonate, 1.8-fold-higher sensitivity to ionizing radiation, a reduced capacity to rejoin single-strand DNA breaks, and a 10-fold-elevated level of sister chromatid exchange compared with the CHO parental cells. The complementing human gene was cloned from a cosmid library of a tertiary transformant. Two cosmid clones produced transformants that showed approximately 100% correction of the repair defect in EM9 cells, as determined by the kinetics of strand break repair, cell survival, and the level of sister chromatid exchange. A nearly full-length clone obtained from the pcD2 human cDNA expression library gave approximately 80% correction of EM9, as determined by the level of sister chromatid exchange. Based on an analysis of the nucleotide sequence of the cDNA insert compared with that of the 5' end of the gene from a cosmid clone, the cDNA clone appeared to be missing approximately 100 bp of transcribed sequence, including 26 nucleotides of coding sequence. The cDNA probe detected a single transcript of approximately 2.2 kb in HeLa polyadenylated RNA by Northern (RNA) blot hybridization. From the open reading frame and the positions of likely start sites for transcription and translation, the size of the putative XRCC1 protein is 633 amino acids (69.5 kDa). The size of the XRCC1 gene is 33 kb, as determined by localizing the endpoints on a restriction endonuclease site map of one cosmid clone. The deduced amino acid sequence did not show significant homology with any protein in the protein sequence data bases examined.

402 citations

Journal ArticleDOI
TL;DR: EM9 may carry a pleiotropic mutation affecting some function in DNA replication and/or DNA repair and causing the variety of phenotypic properties described in this study.
Abstract: A mutant of CHO cells (strain EM9) previously isolated on the basis of hypersensitivity to killing by ethyl methanesulfonate (EMS) is approx. 10-fold more sensitive than the parental line, AA8, to killing by both EMS and MMS. It is also hypersensitive to killing by other alkylating agents (ethyl nitrosourea and N-methyl-N'-nitro-N-nitrosoguanidine), X-rays, and ultraviolet radiation. The production and repair of DNA single-strand breaks (SSB) were studied using the technique of alkaline elution of DNA from filters. After exposure to 4 Gy of X-rays at 0 degrees C and subsequent incubation at 25 degrees C, SSB were repaired within 12 min in AA8, but little repair occurred in EM9. Similarly, with doses of EMS or MMS that produced comparable numbers of SSB in AA8 and EM9 at the end of a 10-min exposure, repair of SSB occurred more rapidly in AA8 than in EM9, suggesting that individual SSB are longer lived in EM9. EM9 was found to be hypersensitive also to the induction of mutations and sister-chromatid exchanges (SCE) by EMS; per unit dose the mutant had twice as many mutations to thioguanine resistance, 3 times as many mutations to azaadenine resistance, and a 7-fold enhancement in SCE, compared to AA8. Moreover, the baseline frequency of SCE in the mutant was extraordinarily high, i.e., 8.6 +/- 0.6 vs. 107 +/- 5 SCE/cell for AA8 and EM9, respectively, with 10 microM BrdUrd in the medium. The high SCE frequency in EM9 did not vary significantly with BrdUrd concentration over the range examined from 2.5 to 20 microM, and the percentage of 5-bromouracil substitution in the DNA was the same in EM9 and AA8 under these conditions. These data, however, do not rule out the possibility that the high SCE frequency in EM9 is a consequence of an altered sensitivity to incorporated BrdUrd. Thus, EM9 may carry a pleiotropic mutation affecting some function in DNA replication and/or DNA repair and causing the variety of phenotypic properties described in this study.

322 citations


Cited by
More filters
Journal ArticleDOI
Eric S. Lander1, Lauren Linton1, Bruce W. Birren1, Chad Nusbaum1  +245 moreInstitutions (29)
15 Feb 2001-Nature
TL;DR: The results of an international collaboration to produce and make freely available a draft sequence of the human genome are reported and an initial analysis is presented, describing some of the insights that can be gleaned from the sequence.
Abstract: The human genome holds an extraordinary trove of information about human development, physiology, medicine and evolution. Here we report the results of an international collaboration to produce and make freely available a draft sequence of the human genome. We also present an initial analysis of the data, describing some of the insights that can be gleaned from the sequence.

22,269 citations

Journal Article
TL;DR: Western medicine has not yet used flavonoids therapeutically, even though their safety record is exceptional, and suggestions are made where such possibilities may be worth pursuing.
Abstract: Flavonoids are nearly ubiquitous in plants and are recognized as the pigments responsible for the colors of leaves, especially in autumn. They are rich in seeds, citrus fruits, olive oil, tea, and red wine. They are low molecular weight compounds composed of a three-ring structure with various substitutions. This basic structure is shared by tocopherols (vitamin E). Flavonoids can be subdivided according to the presence of an oxy group at position 4, a double bond between carbon atoms 2 and 3, or a hydroxyl group in position 3 of the C (middle) ring. These characteristics appear to also be required for best activity, especially antioxidant and antiproliferative, in the systems studied. The particular hydroxylation pattern of the B ring of the flavonoles increases their activities, especially in inhibition of mast cell secretion. Certain plants and spices containing flavonoids have been used for thousands of years in traditional Eastern medicine. In spite of the voluminous literature available, however, Western medicine has not yet used flavonoids therapeutically, even though their safety record is exceptional. Suggestions are made where such possibilities may be worth pursuing.

4,663 citations

PatentDOI
TL;DR: In this article, the authors proposed a method for monitoring the expression levels of a multiplicity of genes by hybridizing a nucleic acid sample to a high density array of oligonucleotide probes and quantifying the hybridized nucleic acids in the array.
Abstract: This invention provides methods of monitoring the expression levels of a multiplicity of genes. The methods involve hybridizing a nucleic acid sample to a high density array of oligonucleotide probes where the high density array contains oligonucleotide probes complementary to subsequences of target nucleic acids in the nucleic acid sample. In one embodiment, the method involves providing a pool of target nucleic acids comprising RNA transcripts of one or more target genes, or nucleic acids derived from the RNA transcripts, hybridizing said pool of nucleic acids to an array of oligonucleotide probes immobilized on surface, where the array comprising more than 100 different oligonucleotides and each different oligonucleotide is localized in a predetermined region of the surface, the density of the different oligonucleotides is greater than about 60 different oligonucleotides per 1 cm2, and the oligonucleotide probes are complementary to the RNA transcripts or nucleic acids derived from the RNA transcripts; and quantifying the hybridized nucleic acids in the array.

4,382 citations

Journal ArticleDOI
21 Oct 2004-Nature
TL;DR: The current human genome sequence (Build 35) as discussed by the authors contains 2.85 billion nucleotides interrupted by only 341 gaps and is accurate to an error rate of approximately 1 event per 100,000 bases.
Abstract: The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers approximately 99% of the euchromatic genome and is accurate to an error rate of approximately 1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human genome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead.

3,989 citations

Journal ArticleDOI
TL;DR: The use of fluorescence in situ hybridization for chromosome classification and detection of chromosome aberrations is described and chromosomes in human-hamster hybrid cell lines were intensely and uniformly stained in metaphase spreads and interphase nuclei when human genomic DNA was used as a probe.
Abstract: This report describes the use of fluorescence in situ hybridization for chromosome classification and detection of chromosome aberrations. Biotin-labeled DNA was hybridized to target chromosomes and subsequently rendered fluorescent by successive treatments with fluorescein-labeled avidin and biotinylated anti-avidin antibody. Human chromosomes in human-hamster hybrid cell lines were intensely and uniformly stained in metaphase spreads and interphase nuclei when human genomic DNA was used as a probe. Interspecies translocations were detected easily at metaphase. The human-specific fluorescence intensity from cell nuclei and chromosomes was proportional to the amount of target human DNA. Human Y chromosomes were fluorescently stained in metaphase and interphase nuclei by using a 0.8-kilobase DNA probe specific for the Y chromosome. Cells from males were 40 times brighter than those from females. Both Y chromosomal domains were visible in most interphase nuclei of XYY amniocytes. Human 28S ribosomal RNA genes on metaphase chromosomes were distinctly stained by using a 1.5-kilobase DNA probe.

3,191 citations