scispace - formally typeset
Search or ask a question
Author

Antoine Geissbuhler

Other affiliations: Geneva College, Health On the Net Foundation, Rutgers University  ...read more
Bio: Antoine Geissbuhler is an academic researcher from University of Geneva. The author has contributed to research in topics: Image retrieval & Health informatics. The author has an hindex of 39, co-authored 247 publications receiving 6391 citations. Previous affiliations of Antoine Geissbuhler include Geneva College & Health On the Net Foundation.


Papers
More filters
Journal ArticleDOI
TL;DR: The goal is not, in general, to replace text-based retrieval methods as they exist at the moment but to complement them with visual search tools.

1,535 citations

Journal ArticleDOI
TL;DR: A retrospective analysis of a prevalence survey of NIs done in the Geneva University Hospital is described to identify patients with one or more NIs on the basis of clinical and other data collected during the survey.

218 citations

Journal ArticleDOI
TL;DR: The methodology used to create a multimedia collection of cases with interstitial lung diseases at the University Hospitals of Geneva to palliate the lack of publicly available collections of ILD cases to serve as a basis for the development and evaluation of image-based computerized diagnostic aid is described.

212 citations

Journal ArticleDOI
TL;DR: In this article, a 3D reconstruction algorithm was developed to reconstruct data from a 16 ring PET camera (a Siemens/CTI 953B) with automatically retractable septa.
Abstract: A fully 3-D reconstruction algorithm has been developed to reconstruct data from a 16 ring PET camera (a Siemens/CTI 953B) with automatically retractable septa. The tomograph is able to acquire coincidences between any pair of detector rings and septa retraction increases the total system count rate by a factor of 7.8 (including scatter) and 4.7 (scatter subtracted) for a uniform, 20 cm diameter cylinder. The reconstruction algorithm is based on 3-D filtered backprojection, expressed in a form suitable for the multi-angle sinogram data. Sinograms which are not measured due to the truncated cylindrical geometry of the tomograph, but which are required for a spatially invariant response function, are obtained by forward projection. After filtering, the complete set of sinograms is backprojected into a 3-D volume of 128*128*31 voxels using a voxel-driven procedure. The algorithm has been validated with simulation, and tested with both phantom and clinical data from the 953B. >

189 citations

Journal ArticleDOI
TL;DR: In the above article Andrea Sboner name was incorrectly spelt in reference number [137], and the correct reference is now below.

185 citations


Cited by
More filters
Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a general approach that accommodates most forms of experimental layout and ensuing analysis (designed experiments with fixed effects for factors, covariates and interaction of factors).
Abstract: + Abstract: Statistical parametric maps are spatially extended statistical processes that are used to test hypotheses about regionally specific effects in neuroimaging data. The most established sorts of statistical parametric maps (e.g., Friston et al. (1991): J Cereb Blood Flow Metab 11:690-699; Worsley et al. 119921: J Cereb Blood Flow Metab 12:YOO-918) are based on linear models, for example ANCOVA, correlation coefficients and t tests. In the sense that these examples are all special cases of the general linear model it should be possible to implement them (and many others) within a unified framework. We present here a general approach that accommodates most forms of experimental layout and ensuing analysis (designed experiments with fixed effects for factors, covariates and interaction of factors). This approach brings together two well established bodies of theory (the general linear model and the theory of Gaussian fields) to provide a complete and simple framework for the analysis of imaging data. The importance of this framework is twofold: (i) Conceptual and mathematical simplicity, in that the same small number of operational equations is used irrespective of the complexity of the experiment or nature of the statistical model and (ii) the generality of the framework provides for great latitude in experimental design and analysis.

9,614 citations

Journal ArticleDOI
TL;DR: Two specific computer-aided detection problems, namely thoraco-abdominal lymph node (LN) detection and interstitial lung disease (ILD) classification are studied, achieving the state-of-the-art performance on the mediastinal LN detection, and the first five-fold cross-validation classification results are reported.
Abstract: Remarkable progress has been made in image recognition, primarily due to the availability of large-scale annotated datasets and deep convolutional neural networks (CNNs). CNNs enable learning data-driven, highly representative, hierarchical image features from sufficient training data. However, obtaining datasets as comprehensively annotated as ImageNet in the medical imaging domain remains a challenge. There are currently three major techniques that successfully employ CNNs to medical image classification: training the CNN from scratch, using off-the-shelf pre-trained CNN features, and conducting unsupervised CNN pre-training with supervised fine-tuning. Another effective method is transfer learning, i.e., fine-tuning CNN models pre-trained from natural image dataset to medical image tasks. In this paper, we exploit three important, but previously understudied factors of employing deep convolutional neural networks to computer-aided detection problems. We first explore and evaluate different CNN architectures. The studied models contain 5 thousand to 160 million parameters, and vary in numbers of layers. We then evaluate the influence of dataset scale and spatial image context on performance. Finally, we examine when and why transfer learning from pre-trained ImageNet (via fine-tuning) can be useful. We study two specific computer-aided detection (CADe) problems, namely thoraco-abdominal lymph node (LN) detection and interstitial lung disease (ILD) classification. We achieve the state-of-the-art performance on the mediastinal LN detection, and report the first five-fold cross-validation classification results on predicting axial CT slices with ILD categories. Our extensive empirical evaluation, CNN model analysis and valuable insights can be extended to the design of high performance CAD systems for other medical imaging tasks.

4,249 citations

Book
17 May 2013
TL;DR: This research presents a novel and scalable approach called “Smartfitting” that automates the very labor-intensive and therefore time-heavy and therefore expensive and expensive process of designing and implementing statistical models for regression models.
Abstract: General Strategies.- Regression Models.- Classification Models.- Other Considerations.- Appendix.- References.- Indices.

3,672 citations

Journal ArticleDOI
TL;DR: Almost 300 key theoretical and empirical contributions in the current decade related to image retrieval and automatic image annotation are surveyed, and the spawning of related subfields are discussed, to discuss the adaptation of existing image retrieval techniques to build systems that can be useful in the real world.
Abstract: We have witnessed great interest and a wealth of promise in content-based image retrieval as an emerging technology. While the last decade laid foundation to such promise, it also paved the way for a large number of new techniques and systems, got many new people involved, and triggered stronger association of weakly related fields. In this article, we survey almost 300 key theoretical and empirical contributions in the current decade related to image retrieval and automatic image annotation, and in the process discuss the spawning of related subfields. We also discuss significant challenges involved in the adaptation of existing image retrieval techniques to build systems that can be useful in the real world. In retrospect of what has been achieved so far, we also conjecture what the future may hold for image retrieval research.

3,433 citations