scispace - formally typeset
Search or ask a question
Author

Antoine Levitt

Bio: Antoine Levitt is an academic researcher from University of Paris. The author has contributed to research in topics: Physics & Wannier function. The author has an hindex of 9, co-authored 39 publications receiving 801 citations. Previous affiliations of Antoine Levitt include École Normale Supérieure & CEREMADE.

Papers
More filters
Journal ArticleDOI
TL;DR: The present paper aims to describe the new capabilities of ABINIT that have been developed since 2009, which include new physical and technical features that allow electronic structure calculations impossible to carry out in the previous versions.

639 citations

Journal ArticleDOI
TL;DR: The preconditioned gradient (PG) and conjugate gradient (PCG) methods for the GS computation of the GPE outperforms all the previous methods, most particularly for 2D and 3D fast rotating BECs, while being simple to implement.

70 citations

Journal ArticleDOI
TL;DR: This algorithm, based on recent theoretical developments, does not require any physical input such as initial guesses for the Wannier functions, unlike popular schemes based on the projection method.
Abstract: We propose an algorithm to determine maximally localized Wannier functions (MLWFs). This algorithm, based on recent theoretical developments, does not require any physical input such as initial guesses for the Wannier functions, unlike popular schemes based on the projection method. We discuss how the projection method can fail on fine grids when the initial guesses are too far from MLWFs. We demonstrate that our algorithm is able to find localized Wannier functions through tests on two-dimensional systems, simplified models of semiconductors, and realistic DFT systems by interfacing with the wannier90 code. We also test our algorithm on the Haldane and Kane-Mele models to examine how it fails in the presence of topological obstructions.

39 citations

Journal ArticleDOI
TL;DR: A new class of methods to solve the many-body polarization energy and its associated forces in molecular simulations (i.e. molecular dynamics and Monte Carlo) is introduced, denoted as Truncated Conjugate Gradient (TCG).
Abstract: We introduce a new class of methods, denoted as Truncated Conjugate Gradient(TCG), to solve the many-body polarization energy and its associated forces in molecular simulations (i.e. molecular dynamics (MD) and Monte Carlo). The method consists in a fixed number of Conjugate Gradient (CG) iterations. TCG approaches provide a scalable solution to the polarization problem at a user-chosen cost and a corresponding optimal accuracy. The optimality of the CG-method guarantees that the number of the required matrix-vector products are reduced to a minimum compared to other iterative methods. This family of methods is non-empirical, fully adaptive, and provides analytical gradients, avoiding therefore any energy drift in MD as compared to popular iterative solvers. Besides speed, one great advantage of this class of approximate methods is that their accuracy is systematically improvable. Indeed, as the CG-method is a Krylov subspace method, the associated error is monotonically reduced at each iteration. On top ...

38 citations

Journal ArticleDOI
TL;DR: Cances and Le Bris as discussed by the authors proved the convergence of a natural gradient algorithm, using a gradient inequality for analytic functionals due to Łojasiewicz [Ensembles semi-analytiques. Institut des Hautes Etudes Scientifiques (1965)].
Abstract: The numerical solution of the Hartree-Fock equations is a central problem in quantum chemistry for which numerous algorithms exist. Attempts to justify these algorithms mathematically have been made, notably in [E. Cances and C. Le Bris, Math. Mod. Numer. Anal. 34 (2000) 749–774], but, to our knowledge, no complete convergence proof has been published, except for the large-Z result of [M. Griesemer and F. Hantsch, Arch. Rational Mech. Anal. (2011) 170]. In this paper, we prove the convergence of a natural gradient algorithm, using a gradient inequality for analytic functionals due to Łojasiewicz [Ensembles semi-analytiques . Institut des Hautes Etudes Scientifiques (1965)]. Then, expanding upon the analysis of [E. Cances and C. Le Bris, Math. Mod. Numer. Anal. 34 (2000) 749–774], we prove convergence results for the Roothaan and Level-Shifting algorithms. In each case, our method of proof provides estimates on the convergence rate. We compare these with numerical results for the algorithms studied.

29 citations


Cited by
More filters
Proceedings Article
14 Jul 1996
TL;DR: The striking signature of Bose condensation was the sudden appearance of a bimodal velocity distribution below the critical temperature of ~2µK.
Abstract: Bose-Einstein condensation (BEC) has been observed in a dilute gas of sodium atoms. A Bose-Einstein condensate consists of a macroscopic population of the ground state of the system, and is a coherent state of matter. In an ideal gas, this phase transition is purely quantum-statistical. The study of BEC in weakly interacting systems which can be controlled and observed with precision holds the promise of revealing new macroscopic quantum phenomena that can be understood from first principles.

3,530 citations

01 Jan 2016
TL;DR: The methods of modern mathematical physics is universally compatible with any devices to read and is available in the digital library an online access to it is set as public so you can download it instantly.
Abstract: Thank you very much for reading methods of modern mathematical physics. Maybe you have knowledge that, people have look numerous times for their favorite novels like this methods of modern mathematical physics, but end up in harmful downloads. Rather than reading a good book with a cup of tea in the afternoon, instead they are facing with some infectious virus inside their desktop computer. methods of modern mathematical physics is available in our digital library an online access to it is set as public so you can download it instantly. Our books collection saves in multiple countries, allowing you to get the most less latency time to download any of our books like this one. Merely said, the methods of modern mathematical physics is universally compatible with any devices to read.

1,536 citations

Journal ArticleDOI
TL;DR: VASPKIT as mentioned in this paper is a command-line program that aims at providing a robust and user-friendly interface to perform high-throughput analysis of a variety of material properties from the raw data produced by the VASP code.

1,357 citations

Journal ArticleDOI
TL;DR: The capabilities and design philosophy of the current version of the PySCF package are document, which is as efficient as the best existing C or Fortran‐based quantum chemistry programs.
Abstract: Python-based simulations of chemistry framework (PySCF) is a general-purpose electronic structure platform designed from the ground up to emphasize code simplicity, so as to facilitate new method development and enable flexible computational workflows. The package provides a wide range of tools to support simulations of finite-size systems, extended systems with periodic boundary conditions, low-dimensional periodic systems, and custom Hamiltonians, using mean-field and post-mean-field methods with standard Gaussian basis functions. To ensure ease of extensibility, PySCF uses the Python language to implement almost all of its features, while computationally critical paths are implemented with heavily optimized C routines. Using this combined Python/C implementation, the package is as efficient as the best existing C or Fortran-based quantum chemistry programs. In this paper, we document the capabilities and design philosophy of the current version of the PySCF package. WIREs Comput Mol Sci 2018, 8:e1340. doi: 10.1002/wcms.1340 This article is categorized under: Structure and Mechanism > Computational Materials Science Electronic Structure Theory > Ab Initio Electronic Structure Methods Software > Quantum Chemistry

1,042 citations