scispace - formally typeset
Search or ask a question
Author

Antoine Llebaria

Other affiliations: University of Provence
Bio: Antoine Llebaria is an academic researcher from Centre national de la recherche scientifique. The author has contributed to research in topics: Exoplanet & Planet. The author has an hindex of 38, co-authored 97 publications receiving 9587 citations. Previous affiliations of Antoine Llebaria include University of Provence.


Papers
More filters
Journal ArticleDOI
TL;DR: The Large Angle Spectroscopic Coronagraph (LASCO) is a triple coronagraph being jointly developed for the Solar and Heliospheric Observatory (SOHO) mission as discussed by the authors.
Abstract: The Large Angle Spectroscopic Coronagraph (LASCO) is a triple coronagraph being jointly developed for the Solar and Heliospheric Observatory (SOHO) mission LASCO comprises three nested coronagraphs (C1, C2, and C3) that image the solar corona for 11 to 30 solar radii (C1: 11 to 3 solar radii, C2: 15 to 6 solar radii, and C3: 3 to 300 solar radii) The inner coronagraph (C1) is a newly developed mirror version of the classic Lyot coronagraph without an external occultor, while the middle coronagraph (C2) and the outer coronagraph (C3) are externally occulted instruments High resolution coronal spectroscopy from 11 to 3 R solar radii can be performed by using a Fabry-Perot interferometer, which is part of C1 High volume memories and a high speed microprocessor enable extensive onboard image processing Image compression by factors of 10 to 20 will result in the transmission of 10 to 20 full images per hour

2,476 citations

Book ChapterDOI
TL;DR: The Large Angle Spectroscopic Coronagraph (LASCO) is a three coronagraph package which has been jointly developed for the Solar and Heliospheric Observatory (SOHO) mission by the Naval Research Laboratory (USA), the Laboratoire d'Astronomie Spatiale (France), the Max-Planck-Institut fur Aeronomie (Germany), and the University of Birmingham (UK) as discussed by the authors.
Abstract: The Large Angle Spectroscopic Coronagraph (LASCO) is a three coronagraph package which has been jointly developed for the Solar and Heliospheric Observatory (SOHO) mission by the Naval Research Laboratory (USA), the Laboratoire d’Astronomie Spatiale (France), the Max-Planck-Institut fur Aeronomie (Germany), and the University of Birmingham (UK) LASCO comprises three coronagraphs, C1, C2, and C3, that together image the solar corona from 11 to 30 R⊙ (C1: 11–3 R⊙, C2: 15–6 R⊙, and C3: 37 – 30 R⊙) The C1 coronagraph is a newly developed mirror version of the classic internally-occulted Lyot coronagraph, while the C2 and C3 coronagraphs are externally occulted instruments High-resolution imaging spectroscopy of the corona from 11 to 3 R⊙ can be performed with the Fabry-Perot interferometer in C1 High-volume memories and a high-speed microprocessor enable extensive on-board image processing Image compression by a factor of about 10 will result in the transmission of 10 full images per hour

1,756 citations

Journal ArticleDOI
M. Auvergne1, P. Bodin2, L. Boisnard2, J.-T. Buey1, S. Chaintreuil1, G. Epstein1, M. Jouret2, T. Lam-Trong2, P. Levacher, A. Magnan, R. Perez2, P. Plasson1, J.-Y. Plesseria, Gisbert Peter, M. Steller3, D. Tiphène1, A. Baglin1, P. Agogué2, Thierry Appourchaux4, D. Barbet4, T. Beaufort5, R. Bellenger1, R. Berlin, P. Bernardi1, D. Blouin, Patrick Boumier4, F. Bonneau2, R. Briet2, B. Butler5, R. Cautain, F. Chiavassa2, V. Costes2, J. Cuvilho, V. Cunha-Parro1, F. De Oliveira Fialho1, M. Decaudin4, J.-M. Defise, S. Djalal2, A. Docclo1, R. Drummond6, O. Dupuis1, G. Exil1, C. Fauré2, A. Gaboriaud2, P. Gamet2, P. Gavalda2, E. Grolleau1, L. Gueguen1, V. Guivarc'h1, P. Guterman, J. Hasiba3, G. Huntzinger1, H. Hustaix2, C. Imbert2, G. Jeanville1, B. Johlander5, Laurent Jorda, P. Journoud1, F. Karioty1, L. Kerjean2, L. Lafond2, V. Lapeyrere1, P. Landiech2, T. Larqué2, P. Laudet2, J. Le Merrer, L. Leporati, B. Leruyet1, B. Levieuge1, Antoine Llebaria, L. Martin, E. Mazy, J.-M. Mesnager2, J.-P. Michel1, J.-P. Moalic4, W. Monjoin1, D. Naudet1, S. Neukirchner3, K. Nguyen-Kim4, Marc Ollivier4, J.-L. Orcesi4, H. Ottacher3, A. Oulali1, J. Parisot1, S. Perruchot, A. Piacentino1, L. Pinheiro da Silva1, J. Platzer1, B. Pontet2, A. Pradines2, Céline Quentin, U. Rohbeck, G. Rolland2, F. Rollenhagen, R. Romagnan1, N. Russ, R. Samadi1, R. Schmidt1, N. Schwartz1, I. Sebbag2, H. Smit5, W. Sunter5, M. Tello2, P. Toulouse2, B. Ulmer, O. Vandermarcq2, E. Vergnault2, R. Wallner3, G. Waultier, P. Zanatta1 
TL;DR: In this paper, the authors present a complete overview of the instrument and platform behavior for all environmental conditions for CoRoT, and show that the performance specifications are easily satisfied when the environmental conditions are favorable.
Abstract: Context. CoRoT is a space telescope dedicated to stellar seismology and the search for extrasolar planets. The mission is led by the CNES in association with French laboratories and has a large international participation. The European Space Agency (ESA), Austria, Belgium, and Germany contribute to the payload, and Spain and Brazil contribute to the ground segment. Development of the spacecraft, which is based on a PROTEUS low earth orbit (LEO) recurrent platform, commenced in October 2000, and the satellite was launched on December 27, 2006. Aims. The instrument and platform characteristics prior to launch have been described in ESA publication (SP-1306). In the present paper we explain the behaviour in flight, based on raw and corrected data. Methods. Five runs have been completed since January 2007. The data used here are essentially those acquired during the commissioning phase and from a long run that lasted 146 days. These enable us to give a complete overview of the instrument and platform behaviour for all environmental conditions. The ground based data processing is not described in detail because the most important method has been published elsewhere. Results. We show that the performance specifications are easily satisfied when the environmental conditions are favourable. Most of the perturbations, hence data corrections, are related to LEO perturbations: high energy particles inside the South Atlantic Anomaly (SAA), eclipses and temperature variations, and line of sight fluctuations due to the attitude control system. Straylight due to the reflected light from the earth, which is controlled by the telescope and baffle design, appears to be negligible.

781 citations

Journal ArticleDOI
A. Léger1, Daniel Rouan2, Jean Schneider3, Pierre Barge4  +159 moreInstitutions (17)
TL;DR: In this paper, the authors reported the discovery of very shallow (ΔF/F ≈ 3.4× 10 −4 ) periodic dips in the light curve of an active V = 11.7 G9V star observed by the CoRoT satellite, which they interpret as caused by a transiting companion.
Abstract: Aims. We report the discovery of very shallow (ΔF/F ≈ 3.4× 10 −4 ), periodic dips in the light curve of an active V = 11.7 G9V star observed by the CoRoT satellite, which we interpret as caused by a transiting companion. We describe the 3-colour CoRoT data and complementary ground-based observations that support the planetary nature of the companion. Methods. We used CoRoT colours information, good angular resolution ground-based photometric observations in- and out- of transit, adaptive optics imaging, near-infrared spectroscopy, and preliminary results from radial velocity measurements, to test the diluted eclipsing binary scenarios. The parameters of the host star were derived from optical spectra, which were then combined with the CoRoT light curve to derive parameters of the companion. Results. We examined all conceivable cases of false positives carefully, and all the tests support the planetary hypothesis. Blends with separation >0.40 �� or triple systems are almost excluded with a 8 × 10 −4 risk left. We conclude that, inasmuch we have been exhaustive, we have discovered a planetary companion, named CoRoT-7b, for which we derive a period of 0.853 59 ± 3 × 10 −5 day and a radius of Rp = 1.68 ± 0.09 REarth .A nalysis of preliminary radial velocity data yields an upper limit of 21 MEarth for the companion mass, supporting the finding. Conclusions. CoRoT-7b is very likely the first Super-Earth with a measured radius. This object illustrates what will probably become a common situation with missions such as Kepler, namely the need to establish the planetary origin of transits in the absence of a firm radial velocity detection and mass measurement. The composition of CoRoT-7b remains loosely constrained without a precise mass. A very high surface temperature on its irradiated face, ≈1800–2600 K at the substellar point, and a very low one, ≈50 K, on its dark face assuming no atmosphere, have been derived.

665 citations

Journal ArticleDOI
TL;DR: In this paper, the authors reported the discovery of very shallow (DF/F = 3.4 10-4), periodic dips in the light curve of an active V = 11.7 G9V star observed by the CoRoT satellite, which they interpret as due to the presence of a transiting companion.
Abstract: We report the discovery of very shallow (DF/F = 3.4 10-4), periodic dips in the light curve of an active V = 11.7 G9V star observed by the CoRoT satellite, which we interpret as due to the presence of a transiting companion. We describe the 3-colour CoRoT data and complementary ground-based observations that support the planetary nature of the companion. Methods. We use CoRoT color information, good angular resolution ground-based photometric observations in- and out- of transit, adaptive optics imaging, near-infrared spectroscopy and preliminary results from Radial Velocity measurements, to test the diluted eclipsing binary scenarios. The parameters of the host star are derived from optical spectra, which were then combined with the CoRoT light curve to derive parameters of the companion. We examine carefully all conceivable cases of false positives, and all tests performed support the planetary hypothesis. Blends with separation larger than 0.40 arcsec or triple systems are almost excluded with a 8 10-4 risk left. We conclude that, as far as we have been exhaustive, we have discovered a planetary companion, named CoRoT-7b, for which we derive a period of 0.853 59 +/- 3 10-5 day and a radius of Rp = 1.68 +/- 0.09 REarth. Analysis of preliminary radial velocity data yields an upper limit of 21 MEarth for the companion mass, supporting the finding. CoRoT-7b is very likely the first Super-Earth with a measured radius.

570 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Modules for Experiments in Stellar Astrophysics (MESA) as discussed by the authors can now simultaneously evolve an interacting pair of differentially rotating stars undergoing transfer and loss of mass and angular momentum, greatly enhancing the prior ability to model binary evolution.
Abstract: We substantially update the capabilities of the open-source software instrument Modules for Experiments in Stellar Astrophysics (MESA). MESA can now simultaneously evolve an interacting pair of differentially rotating stars undergoing transfer and loss of mass and angular momentum, greatly enhancing the prior ability to model binary evolution. New MESA capabilities in fully coupled calculation of nuclear networks with hundreds of isotopes now allow MESA to accurately simulate advanced burning stages needed to construct supernova progenitor models. Implicit hydrodynamics with shocks can now be treated with MESA, enabling modeling of the entire massive star lifecycle, from pre-main sequence evolution to the onset of core collapse and nucleosynthesis from the resulting explosion. Coupling of the GYRE non-adiabatic pulsation instrument with MESA allows for new explorations of the instability strips for massive stars while also accelerating the astrophysical use of asteroseismology data. We improve treatment of mass accretion, giving more accurate and robust near-surface profiles. A new MESA capability to calculate weak reaction rates "on-the-fly" from input nuclear data allows better simulation of accretion induced collapse of massive white dwarfs and the fate of some massive stars. We discuss the ongoing challenge of chemical diffusion in the strongly coupled plasma regime, and exhibit improvements in MESA that now allow for the simulation of radiative levitation of heavy elements in hot stars. We close by noting that the MESA software infrastructure provides bit-for-bit consistency for all results across all the supported platforms, a profound enabling capability for accelerating MESA's development.

2,166 citations

Journal ArticleDOI
TL;DR: The Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI) is a five telescope package, which has been developed for the Solar Terrestrial Relation Observatory (STEREO) mission.
Abstract: The Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI) is a five telescope package, which has been developed for the Solar Terrestrial Relation Observatory (STEREO) mission by the Naval Research Laboratory (USA), the Lockheed Solar and Astrophysics Laboratory (USA), the Goddard Space Flight Center (USA), the University of Birmingham (UK), the Rutherford Appleton Laboratory (UK), the Max Planck Institute for Solar System Research (Germany), the Centre Spatiale de Leige (Belgium), the Institut d’Optique (France) and the Institut d’Astrophysique Spatiale (France). SECCHI comprises five telescopes, which together image the solar corona from the solar disk to beyond 1 AU. These telescopes are: an extreme ultraviolet imager (EUVI: 1–1.7 R⊙), two traditional Lyot coronagraphs (COR1: 1.5–4 R⊙ and COR2: 2.5–15 R⊙) and two new designs of heliospheric imagers (HI-1: 15–84 R⊙ and HI-2: 66–318 R⊙). All the instruments use 2048×2048 pixel CCD arrays in a backside-in mode. The EUVI backside surface has been specially processed for EUV sensitivity, while the others have an anti-reflection coating applied. A multi-tasking operating system, running on a PowerPC CPU, receives commands from the spacecraft, controls the instrument operations, acquires the images and compresses them for downlink through the main science channel (at compression factors typically up to 20×) and also through a low bandwidth channel to be used for space weather forecasting (at compression factors up to 200×). An image compression factor of about 10× enable the collection of images at the rate of about one every 2–3 minutes. Identical instruments, except for different sizes of occulters, are included on the STEREO-A and STEREO-B spacecraft.

1,781 citations

Journal ArticleDOI
TL;DR: The twin STEREO spacecraft were launched on October 26, 2006, at 00:52 UT from Kennedy Space Center aboard a Delta 7925 launch vehicle to understand the causes and mechanisms of coronal mass ejection (CME) initiation and follow the propagation of CMEs through the inner heliosphere to Earth as mentioned in this paper.
Abstract: The twin STEREO spacecraft were launched on October 26, 2006, at 00:52 UT from Kennedy Space Center aboard a Delta 7925 launch vehicle. After a series of highly eccentric Earth orbits with apogees beyond the moon, each spacecraft used close flybys of the moon to escape into orbits about the Sun near 1 AU. Once in heliospheric orbit, one spacecraft trails Earth while the other leads. As viewed from the Sun, the two spacecraft separate at approximately 44 to 45 degrees per year. The purposes of the STEREO Mission are to understand the causes and mechanisms of coronal mass ejection (CME) initiation and to follow the propagation of CMEs through the inner heliosphere to Earth. Researchers will use STEREO measurements to study the mechanisms and sites of energetic particle acceleration and to develop three-dimensional (3-D) time-dependent models of the magnetic topology, temperature, density and velocity of the solar wind between the Sun and Earth. To accomplish these goals, each STEREO spacecraft is equipped with an almost identical set of optical, radio and in situ particles and fields instruments provided by U.S. and European investigators. The SECCHI suite of instruments includes two white light coronagraphs, an extreme ultraviolet imager and two heliospheric white light imagers which track CMEs out to 1 AU. The IMPACT suite of instruments measures in situ solar wind electrons, energetic electrons, protons and heavier ions. IMPACT also includes a magnetometer to measure the in situ magnetic field strength and direction. The PLASTIC instrument measures the composition of heavy ions in the ambient plasma as well as protons and alpha particles. The S/WAVES instrument uses radio waves to track the location of CME-driven shocks and the 3-D topology of open field lines along which flow particles produced by solar flares. Each of the four instrument packages produce a small real-time stream of selected data for purposes of predicting space weather events at Earth. NOAA forecasters at the Space Environment Center and others will use these data in their space weather forecasting and their resultant products will be widely used throughout the world. In addition to the four instrument teams, there is substantial participation by modeling and theory oriented teams. All STEREO data are freely available through individual Web sites at the four Principal Investigator institutions as well as at the STEREO Science Center located at NASA Goddard Space Flight Center.

1,579 citations

Journal ArticleDOI
TL;DR: Modules for Experiments in Stellar Astrophysics (MESA) as discussed by the authors can now simultaneously evolve an interacting pair of differentially rotating stars undergoing transfer and loss of mass and angular momentum, greatly enhancing the prior ability to model binary evolution.
Abstract: We substantially update the capabilities of the open-source software instrument Modules for Experiments in Stellar Astrophysics (MESA). MESA can now simultaneously evolve an interacting pair of differentially rotating stars undergoing transfer and loss of mass and angular momentum, greatly enhancing the prior ability to model binary evolution. New MESA capabilities in fully coupled calculation of nuclear networks with hundreds of isotopes now allow MESA to accurately simulate advanced burning stages needed to construct supernova progenitor models. Implicit hydrodynamics with shocks can now be treated with MESA, enabling modeling of the entire massive star lifecycle, from pre-main sequence evolution to the onset of core collapse and nucleosynthesis from the resulting explosion. Coupling of the GYRE non-adiabatic pulsation instrument with MESA allows for new explorations of the instability strips for massive stars while also accelerating the astrophysical use of asteroseismology data. We improve treatment of mass accretion, giving more accurate and robust near-surface profiles. A new MESA capability to calculate weak reaction rates "on-the-fly" from input nuclear data allows better simulation of accretion induced collapse of massive white dwarfs and the fate of some massive stars. We discuss the ongoing challenge of chemical diffusion in the strongly coupled plasma regime, and exhibit improvements in MESA that now allow for the simulation of radiative levitation of heavy elements in hot stars. We close by noting that the MESA software infrastructure provides bit-for-bit consistency for all results across all the supported platforms, a profound enabling capability for accelerating MESA's development.

1,401 citations

Journal ArticleDOI
TL;DR: The Kepler mission as mentioned in this paper was designed with the explicit capability to detect Earth-size planets in the habitable zone of solar-like stars using the transit photometry method, and the results from just 43 days of data along with ground-based follow-up observations have identified five new transiting planets with measurements of their masses, radii, and orbital periods.
Abstract: The Kepler Mission, launched on 2009 March 6, was designed with the explicit capability to detect Earth-size planets in the habitable zone of solar-like stars using the transit photometry method. Results from just 43 days of data along with ground-based follow-up observations have identified five new transiting planets with measurements of their masses, radii, and orbital periods. Many aspects of stellar astrophysics also benefit from the unique, precise, extended, and nearly continuous data set for a large number and variety of stars. Early results for classical variables and eclipsing stars show great promise. To fully understand the methodology, processes, and eventually the results from the mission, we present the underlying rationale that ultimately led to the flight and ground system designs used to achieve the exquisite photometric performance. As an example of the initial photometric results, we present variability measurements that can be used to distinguish dwarf stars from red giants.

1,203 citations