scispace - formally typeset
Search or ask a question
Author

Antoine Maignan

Bio: Antoine Maignan is an academic researcher from University of Caen Lower Normandy. The author has contributed to research in topics: Antiferromagnetism & Ferromagnetism. The author has an hindex of 46, co-authored 360 publications receiving 7431 citations. Previous affiliations of Antoine Maignan include Northwest University (United States) & University of Rouen.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, it was shown that the doping of perovskite manganites with either chromium or cobalt induces an insulator to metal transition, which is exceptional since such a transition has not been observed to date in charge ordered manganite Ln 0.5 Ca 0.3 with an A-site cation of such a small size.

269 citations

Journal ArticleDOI
TL;DR: This work reports on a new electrochemically active compound with the 'Li4Mn2O5' composition, prepared by direct mechanochemical synthesis at room temperature, which shows a discharge capacity of 355 mAh g(-1), which is the highest yet reported among the known lithium manganese oxide electrode materials.
Abstract: The search for new materials that can improve the energy density of Li-ion batteries is technologically important. An electrochemically active compound with the composition Li4Mn2O5 exhibits an unprecedented discharge capacity of 355 mAh g−1. The search for new materials that could improve the energy density of Li-ion batteries is one of today’s most challenging issues. Many families of transition metal oxides as well as transition metal polyanionic frameworks have been proposed during the past twenty years1,2. Among them, manganese oxides, such as the LiMn2O4 spinel or the overlithiated oxide Li[Li1/3Mn2/3]O2, have been intensively studied owing to the low toxicity of manganese-based materials and the high redox potential of the Mn3+/Mn4+ couple. In this work, we report on a new electrochemically active compound with the ‘Li4Mn2O5’ composition, prepared by direct mechanochemical synthesis at room temperature. This rock-salt-type nanostructured material shows a discharge capacity of 355 mAh g−1, which is the highest yet reported among the known lithium manganese oxide electrode materials. According to the magnetic measurements, this exceptional capacity results from the electrochemical activity of the Mn3+/Mn4+ and O2−/O− redox couples, and, importantly, of the Mn4+/Mn5+ couple also.

265 citations

Journal ArticleDOI
TL;DR: In this paper, the authors discuss the different factors which govern the magnetic and transport properties of manganites with perovskite structure: carrier concentration, average size of the interpolated cation, and mismatch effect on the A-site.
Abstract: Manganites with the perovskite structure represent a very important family of oxides which are extensively studied for their colossal magnetoresistance (CMR) properties In the present review we discuss the different factors which govern the magnetic and transport properties of these materials: carrier concentration, average size of the interpolated cation, and mismatch effect on the A-site Three types of oxides are mainly examined: (i) the hole doped manganites Ln07A03MnO3 (A = Ca, Sr, Ba), (ii) the “charge ordered” Ln05A05MnO3 manganites, and (iii) the electron doped manganites Ca1-xLnxMnO3 and Ca1-xThxMnO3 The relationships between structural and magnetic transitions are discussed, and particular attention is paid to charge ordering phenomena The doping of the Mn sites by various elements (Al, Ga, In, Ti, Sn, Fe, Cr, Co, Ni) is systematically examined The beneficial effect of “Cr, Co, Ni” elements, which induce CMR properties in these perovskites, is emphasized

218 citations

Journal ArticleDOI
TL;DR: In this paper, the chemical, structural and transport properties of a series of In2O3-based samples with germanium doping (from 0 to 15 atom%). X-ray diffraction and scanning electron microscopy studies show that the solubility limit of Ge in In2E3 is very small and that additions of more than about 0.5 atom% Ge lead to the presence of In 2Ge2O7 inclusions.

156 citations

Journal ArticleDOI
TL;DR: The first observation of quantum tunneling of the magnetization (QTM) in a magnetic oxide belonging to the large family of A3BB′O6 compounds is reported in this paper.
Abstract: The magnetic behavior of the Ca3Co2O6 spin chain compound is characterized by a large Ising-like character of its ferromagnetic chains, set on a triangular lattice, that are antiferromagnetically coupled. At low temperature, T < 7 K, the 3D antiferromagnetic state evolves towards a spin frozen state. In this temperature range, magnetic field driven magnetization of single crystals (H // chains) exhibits stepped variations. The occurrence of these steps at regular intervals of the applied magnetic field, Hstep = 1.2 T, is reminiscent of the quantum tunneling of the magnetization (QTM) of molecular based magnets. Magnetization relaxation experiments also strongly support the occurrence of this quantum phenomenon. This first observation of QTM in a magnetic oxide belonging to the large family of A3BB′O6 compounds opens new opportunities to study a quantum effect in a very different class of materials from molecular magnets.

148 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: The most promising bulk materials with emphasis on results from the last decade are described and the new opportunities for enhanced performance bulk nanostructured composite materials are examined and a look into the not so distant future is attempted.
Abstract: Herein we cover the key concepts in the field of thermoelectric materials research, present the current understanding, and show the latest developments. Current research is aimed at increasing the thermoelectric figure of merit (ZT) by maximizing the power factor and/or minimizing the thermal conductivity. Attempts at maximizing the power factor include the development of new materials, optimization of existing materials by doping, and the exploration of nanoscale materials. The minimization of the thermal conductivity can come through solid-solution alloying, use of materials with intrinsically low thermal conductivity, and nanostructuring. Herein we describe the most promising bulk materials with emphasis on results from the last decade. Single-phase bulk materials are discussed in terms of chemistry, crystal structure, physical properties, and optimization of thermoelectric performance. The new opportunities for enhanced performance bulk nanostructured composite materials are examined and a look into the not so distant future is attempted.

1,951 citations

Journal ArticleDOI
TL;DR: The results indicate a new strategy and direction for high-efficiency thermoelectric materials by exploring systems where there exists a crystalline sublattice for electronic conduction surrounded by liquid-like ions.
Abstract: Advanced thermoelectric technology offers a potential for converting waste industrial heat into useful electricity, and an emission-free method for solid state cooling. Worldwide efforts to find materials with thermoelectric figure of merit, zT values significantly above unity, are frequently focused on crystalline semiconductors with low thermal conductivity. Here we report on Cu_(2−x)Se, which reaches a zT of 1.5 at 1,000 K, among the highest values for any bulk materials. Whereas the Se atoms in Cu_(2−x)Se form a rigid face-centred cubic lattice, providing a crystalline pathway for semiconducting electrons (or more precisely holes), the copper ions are highly disordered around the Se sublattice and are superionic with liquid-like mobility. This extraordinary ‘liquid-like’ behaviour of copper ions around a crystalline sublattice of Se in Cu_(2−x)Se results in an intrinsically very low lattice thermal conductivity which enables high zT in this otherwise simple semiconductor. This unusual combination of properties leads to an ideal thermoelectric material. The results indicate a new strategy and direction for high-efficiency thermoelectric materials by exploring systems where there exists a crystalline sublattice for electronic conduction surrounded by liquid-like ions.

1,609 citations

Journal ArticleDOI
01 Sep 1997
TL;DR: In this paper, the authors review recent experimental work falling under the broad classification of colossal magnetoresistance (CMR), which is magnetoreduction associated with a ferromagnetic-toparamagnetic phase transition.
Abstract: We review recent experimental work falling under the broad classification of colossal magnetoresistance (CMR), which is magnetoresistance associated with a ferromagnetic-toparamagnetic phase transition. The prototypical CMR compound is derived from the parent compound, perovskite LaMnO 3. When hole doped at a concentration of 20–40% holes/Mn ion, for instance by Ca or Sr substitution for La, the material displays a transition from a high-temperature paramagnetic insulator to a low-temperature ferromagnetic metal. Near the phase transition temperature, which can exceed room temperature in some compositions, large magnetoresistance is observed and its possible application in magnetic recording has revived interest in these materials. In addition, unusual magneto-elastic effects and charge ordering have focused attention on strong electron–phonon coupling. This coupling, which is a type of dynamic extended-system version of the Jahn–Teller effect, in conjunction with the double-exchange interaction, is also viewed as essential for a microscopic description of CMR in the manganite perovskites. Large magnetoresistance is also seen in other systems, namely Tl 2Mn2O7 and some Cr chalcogenide spinels, compounds which differ greatly from the manganite perovskites. We describe the relevant points of contrast between the various CMR materials.

1,336 citations

Journal ArticleDOI
TL;DR: In this article, the authors highlight the physical concepts of multiferroicity and the current challenges to integrate the magnetism and ferroelectricity into a single-phase system and summarize various strategies used to combine the two types of order.
Abstract: Multiferroics, defined for those multifunctional materials in which two or more kinds of fundamental ferroicities coexist, have become one of the hottest topics of condensed matter physics and materials science in recent years. The coexistence of several order parameters in multiferroics brings out novel physical phenomena and offers possibilities for new device functions. The revival of research activities on multiferroics is evidenced by some novel discoveries and concepts, both experimentally and theoretically. In this review, we outline some of the progressive milestones in this stimulating field, especially for those single-phase multiferroics where magnetism and ferroelectricity coexist. First, we highlight the physical concepts of multiferroicity and the current challenges to integrate the magnetism and ferroelectricity into a single-phase system. Subsequently, we summarize various strategies used to combine the two types of order. Special attention is paid to three novel mechanisms for multiferroicity generation: (1) the ferroelectricity induced by the spin orders such as spiral and E-phase antiferromagnetic spin orders, which break the spatial inversion symmetry; (2) the ferroelectricity originating from the charge-ordered states; and (3) the ferrotoroidic system. Then, we address the elementary excitations such as electromagnons, and the application potentials of multiferroics. Finally, open questions and future research opportunities are proposed.

1,243 citations