scispace - formally typeset
Search or ask a question
Author

Anton Bossalaers

Bio: Anton Bossalaers is an academic researcher from Katholieke Universiteit Leuven. The author has contributed to research in topics: Block cipher & MDS matrix. The author has an hindex of 1, co-authored 1 publications receiving 205 citations.

Papers
More filters
Book ChapterDOI
21 Feb 1996
TL;DR: Shark as discussed by the authors combines highly nonlinear substitution boxes and maximum distance separable error correcting codes (MDS-codes) to guarantee a good diffusion and is resistant against differential and linear cryptanalysis after a small number of rounds.
Abstract: We present the new block cipher SHARK. This cipher combines highly non-linear substitution boxes and maximum distance separable error correcting codes (MDS-codes) to guarantee a good diffusion. The cipher is resistant against differential and linear cryptanalysis after a small number of rounds. The structure of SHARK is such that a fast software implementation is possible, both for the encryption and the decryption. Our C-implementation of SHARK runs more than four times faster than SAFER and IDEA on a 64-bit architecture.

220 citations


Cited by
More filters
Book
01 Jan 1996
TL;DR: A valuable reference for the novice as well as for the expert who needs a wider scope of coverage within the area of cryptography, this book provides easy and rapid access of information and includes more than 200 algorithms and protocols.
Abstract: From the Publisher: A valuable reference for the novice as well as for the expert who needs a wider scope of coverage within the area of cryptography, this book provides easy and rapid access of information and includes more than 200 algorithms and protocols; more than 200 tables and figures; more than 1,000 numbered definitions, facts, examples, notes, and remarks; and over 1,250 significant references, including brief comments on each paper.

13,597 citations

Book
14 Feb 2002
TL;DR: The underlying mathematics and the wide trail strategy as the basic design idea are explained in detail and the basics of differential and linear cryptanalysis are reworked.
Abstract: 1. The Advanced Encryption Standard Process.- 2. Preliminaries.- 3. Specification of Rijndael.- 4. Implementation Aspects.- 5. Design Philosophy.- 6. The Data Encryption Standard.- 7. Correlation Matrices.- 8. Difference Propagation.- 9. The Wide Trail Strategy.- 10. Cryptanalysis.- 11. Related Block Ciphers.- Appendices.- A. Propagation Analysis in Galois Fields.- A.1.1 Difference Propagation.- A.l.2 Correlation.- A. 1.4 Functions that are Linear over GF(2).- A.2.1 Difference Propagation.- A.2.2 Correlation.- A.2.4 Functions that are Linear over GF(2).- A.3.3 Dual Bases.- A.4.2 Relationship Between Trace Patterns and Selection Patterns.- A.4.4 Illustration.- A.5 Rijndael-GF.- B. Trail Clustering.- B.1 Transformations with Maximum Branch Number.- B.2 Bounds for Two Rounds.- B.2.1 Difference Propagation.- B.2.2 Correlation.- B.3 Bounds for Four Rounds.- B.4 Two Case Studies.- B.4.1 Differential Trails.- B.4.2 Linear Trails.- C. Substitution Tables.- C.1 SRD.- C.2 Other Tables.- C.2.1 xtime.- C.2.2 Round Constants.- D. Test Vectors.- D.1 KeyExpansion.- D.2 Rijndael(128,128).- D.3 Other Block Lengths and Key Lengths.- E. Reference Code.

3,444 citations

Book ChapterDOI
10 Sep 2007
TL;DR: An ultra-lightweight block cipher, present, which is competitive with today's leading compact stream ciphers and suitable for extremely constrained environments such as RFID tags and sensor networks.
Abstract: With the establishment of the AES the need for new block ciphers has been greatly diminished; for almost all block cipher applications the AES is an excellent and preferred choice. However, despite recent implementation advances, the AES is not suitable for extremely constrained environments such as RFID tags and sensor networks. In this paper we describe an ultra-lightweight block cipher, present . Both security and hardware efficiency have been equally important during the design of the cipher and at 1570 GE, the hardware requirements for present are competitive with today's leading compact stream ciphers.

2,202 citations

Book ChapterDOI
20 Jan 1997
TL;DR: A new 128-bit block cipher called Square, which concentrates on the resistance against differential and linear cryptanalysis, and the publication of the resulting cipher for public scrutiny is published.
Abstract: In this paper we present a new 128-bit block cipher called Square. The original design of Square concentrates on the resistance against differential and linear cryptanalysis. However, after the initial design a dedicated attack was mounted that forced us to augment the number of rounds. The goal of this paper is the publication of the resulting cipher for public scrutiny. A C implementation of Square is available that runs at 2.63 MByte/s on a 100 MHz Pentium. Our M68HC05 Smart Card implementation fits in 547 bytes and takes less than 2 msec. (4 MHz Clock). The high degree of parallellism allows hardware implementations in the Gbit/s range today.

759 citations

Proceedings Article
04 Feb 2002
TL;DR: This paper considers a cryptanalytic approach called integral cryptanalysis, which can be seen as a dual to differential cryptanalysis and applies to ciphers not vulnerable to differential attacks.
Abstract: This paper considers a cryptanalytic approach called integral cryptanalysis. It can be seen as a dual to differential cryptanalysis and applies to ciphers not vulnerable to differential attacks. The method is particularlyapplicable to block ciphers which use bijective components only.

419 citations