scispace - formally typeset
Search or ask a question
Author

Anton Burykin

Bio: Anton Burykin is an academic researcher from University of Southern California. The author has contributed to research in topics: Proton transport & Ion current. The author has an hindex of 6, co-authored 6 publications receiving 478 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: It is found that the water/proton selectivity is controlled by the change in solvation free energy upon moving the charged proton from water to the channel.
Abstract: The nature of the control of water/proton selectivity in biological channels is a problem of a fundamental importance. Most studies of this issue have proposed that an interference with the orientational requirements of the so-called proton wire is the source of selectivity. The elucidation of the structures of aquaporins, which have evolved to prevent proton transfer (PT), provided a clear benchmark for exploring the selectivity problem. Previous simulations of this system have not examined, however, the actual issue of PT, but only considered the much simpler task of the transfer of water molecules. Here we take aquaporin as a benchmark and quantify the origin of the water/proton selectivity in this and related systems. This is done by evaluating in a consistent way the free energy profile for transferring a proton along the channel and relating this profile to the relevant PT rate constants. It is found that the water/proton selectivity is controlled by the change in solvation free energy upon moving the charged proton from water to the channel. The reason for the focus on the elegant concept of the proton wire and the related Grotthuss-type mechanism is also considered. It is concluded that these mechanisms are clearly important in cases with flat free energy surfaces (e.g., in bulk water, in gas phase water chains, and in infinitely long channels). However, in cases of biological channels, the actual PT mechanism is much less important than the energetics of transferring the proton charge from water to different regions in the channels.

161 citations

Journal ArticleDOI
15 May 2002-Proteins
TL;DR: The present work develops an approach that overcomes some of the above challenges and allows one to simulate ion currents in models of biologic channels and provides a fast and reliable estimate of the energetics of the system by combining semimacroscopic calculations of the self‐energy of each ion and an implicit treatment of the interactions between the ions.
Abstract: Realistic studies of ion current in biologic channels present a major challenge for computer simulation approaches. All-atom molecular dynamics simulations involve serious time limitations that prevent their use in direct evaluation of ion current in channels with significant barriers. The alternative use of Brownian dynamics (BD) simulations can provide the current for simplified macroscopic models. However, the time needed for accurate calculations of electrostatic energies can make BD simulations of ion current expensive. The present work develops an approach that overcomes some of the above challenges and allows one to simulate ion currents in models of biologic channels. Our method provides a fast and reliable estimate of the energetics of the system by combining semimacroscopic calculations of the self-energy of each ion and an implicit treatment of the interactions between the ions, as well as the interactions between the ions and the protein-ionizable groups. This treatment involves the use of the semimacroscopic version of the protein dipole Langevin dipole (PDLD/S) model in its linear response approximation (LRA) implementation, which reduces the uncertainties about the value of the protein "dielectric constant." The resulting free energy surface is used to generate the forces for on-the-fly BD simulations of the corresponding ion currents. Our model is examined in a preliminary simulation of the ion current in the KcsA potassium channel. The complete free energy profile for a single ion transport reflects reasonable energetics and captures the effect of the protein-ionized groups. This calculated profile indicates that we are dealing with the channel in its closed state. Reducing the barrier at the gate region allows us to simulate the ion current in a reasonable computational time. Several limiting cases are examined, including those that reproduce the observed current, and the nature of the productive trajectories is considered. The ability to simulate the current in realistic models of ion channels should provide a powerful tool for studies of the biologic function of such systems, including the analysis of the effect of mutations, pH, and electric potentials.

96 citations

Journal ArticleDOI
15 Aug 2003-Proteins
TL;DR: This work has developed and refined an approach capable of evaluating ion current while still reflecting the realistic features of the given channel and produces the first time that the trend in the selectivity in the ion current is produced by a computer simulation approach.
Abstract: The availability of structural information about biological ion channels provides an opportunity to gain a detailed understanding of the control of ion selectivity by biological systems. However, accomplishing this task by computer simulation approaches is very challenging. First, although the activation barriers for ion transport can be evaluated by microscopic simulations, it is hard to obtain accurate results by such approaches. Second, the selectivity is related to the actual ion current and not directly to the individual activation barriers. Thus, it is essential to simulate the ion currents and this cannot be accomplished at present by microscopic MD approaches. In order to address this challenge, we developed and refined an approach capable of evaluating ion current while still reflecting the realistic features of the given channel. Our method involves generation of semimacroscopic free energy surfaces for the channel/ions system and Brownian dynamics (BD) simulations of the corresponding ion current. In contrast to most alternative macroscopic models, our approach is able to reproduce the difference between the free energy surfaces of different ions and thus to address the selectivity problem. Our method is used in a study of the selectivity of the KcsA channel toward the K+ and Na+ ions. The BD simulations with the calculated free energy profiles produce an appreciable selectivity. To the best of our knowledge, this is the first time that the trend in the selectivity in the ion current is produced by a computer simulation approach. Nevertheless, the calculated selectivity is still smaller than its experimental estimate. Recognizing that the calculated profiles are not perfect, we examine how changes in these profiles can account for the observed selectivity. It is found that the origin of the selectivity is more complex than generally assumed. The observed selectivity can be reproduced by increasing the barrier at the exit and the entrance of the selectivity filter, but the necessary changes in the barrier approach the limit of the error in the PDLD/S-LRA calculations. Other options that can increase the selectivity are also considered, including the difference between the Na+...Na+ and K+...K+ interaction. However, this interesting effect does not appear to lead to a major difference in selectivity since the Na+ ions at the limit of strong interaction tend to move in a less concerted way than the K+ ions. Changes in the relative binding energies at the different binding sites are also not so effective in changing the selectivity. Finally, it is pointed out that using the calculated profiles as a starting point and forcing the model to satisfy different experimentally based constraints, should eventually provide more detailed understanding of the different complex factors involved in ion selectivity of biological channels.

88 citations

Journal ArticleDOI
TL;DR: The nature of the electrostatic barrier for proton transport in aquaporins is analyzed by semimacroscopic and microscopic models and it is found that the residues in the NPA region contribute much less than what would be deduced from calculations that do not consider the protein reorganization.
Abstract: The nature of the electrostatic barrier for proton transport in aquaporins is analyzed by semimacroscopic and microscopic models. It is found that the barrier is associated with the loss of the generalized solvation energy upon moving from the bulk solvent to the center of the channel. It is clarified that our solvation concept includes the effect of the protein polar groups and ionized residues. The nature of the contributions to the solvation barrier is examined by using the linear response approximation. It is found that the residues in the NPA region contribute much less than what would be deduced from calculations that do not consider the protein reorganization. It is clarified that the contributions of different structural or electrostatic elements to the solvation barrier can be established by removing these elements and examining the corresponding effect on the barrier height. Using this definition and "mutating" the NPA residues to their non-polar analogues establishes that these residues do not provide the major contribution to the solvation barrier.

71 citations

Journal ArticleDOI
TL;DR: It is found that the PTR in gA is controlled by the change in solvation energy of the transferred proton along the channel axis, and in the case of gA, and probably other systems with significant electrostatic barriers for the transfer of the proton charge, the P TR rate is controlledBy the electrostatic barrier.
Abstract: The nature of proton transduction (PTR) through a file of water molecules, along the gramicidin A (gA) channel, has long been considered as being highly relevant to PTR in biological systems. Previous attempts to model this process implied that the so-called Grotthuss mechanism and the corresponding orientation of the water file plays a major role. The present work reexamines the PTR in gA by combining a fully microscopic empirical valence bond (EVB) model and a recently developed simplified EVB-based model with Langevin dynamics (LD) simulations. The full model is used first to evaluate the free energy profile for a stepwise PTR process. The corresponding results are then used to construct the effective potential of the simplified EVB. This later model is then used in Langevin dynamics simulations, taking into account the correct physics of possible concerted motions and the effect of the solvent reorganization. The simulations reproduce the observed experimental trend and lead to a picture that is quite...

65 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The recent confirmation that there is at least one world rich in organic molecules on which rivers and perhaps shallow seas or bogs are filled with nonaqueous fluidsthe liquid hydrocarbons of Titan now bring some focus, even urgency, to the question of whether water is indeed a matrix of life.
Abstract: When Szent-Gyorgyi called water the “matrix of life”,1 he was echoing an old sentiment. Paracelsus in the 16th century said that “water was the matrix of the world and of all its creatures.”2 But Paracelsus’s notion of a matrixsan active substance imbued with fecund, life-giving propertiess was quite different from the picture that, until very recently, molecular biologists have tended to hold of water’s role in the chemistry of life. Although acknowledging that liquid water has some unusual and important physical and chemical propertiessits potency as a solvent, its ability to form hydrogen bonds, its amphoteric naturesbiologists have regarded it essentially as the backdrop on which life’s molecular components are arrayed. It used to be common practice, for example, to perform computer simulations of biomolecules in a vacuum. Partly this was because the computational intensity of simulating a polypeptide chain was challenging even without accounting for solvent molecules too, but it also reflected the prevailing notion that water does little more than temper or moderate the basic physicochemical interactions responsible for molecular biology. What Gerstein and Levitt said 9 years ago remains true today: “When scientists publish models of biological molecules in journals, they usually draw their models in bright colors and place them against a plain, black background”.3 Curiously, this neglect of water as an active component of the cell went hand in hand with the assumption that life could not exist without it. That was basically an empirical conclusion derived from our experience of life on Earth: environments without liquid water cannot sustain life, and special strategies are needed to cope with situations in which, because of extremes of either heat or cold, the liquid is scarce.4-6 The recent confirmation that there is at least one world rich in organic molecules on which rivers and perhaps shallow seas or bogs are filled with nonaqueous fluidsthe liquid hydrocarbons of Titan7smight now bring some focus, even urgency, to the question of whether water is indeed a * E-mail: p.ball@nature.com. Philip Ball is a science writer and a consultant editor for Nature, where he worked as an editor for physical sciences for more than 10 years. He holds a Ph.D. in physics from the University of Bristol, where he worked on the statistical mechanics of phase transitions in the liquid state. His book H2O: A Biography of Water (Weidenfeld & Nicolson, 1999) was a survey of the current state of knowledge about the behavior of water in situations ranging from planetary geomorphology to cell biology. He frequently writes about aspects of water science for both the popular and the technical media.

1,798 citations

Journal ArticleDOI
15 Nov 2008-Proteins
TL;DR: The results suggest that PROPKA 2.0 provides a good description of the protein–ligand interactions that have an important effect on the pKa values of titratable groups, thereby permitting fast and accurate determination of the protonation states of key residues and ligand functional groups within the binding or active site of a protein.
Abstract: The PROPKA method for the prediction of the pK(a) values of ionizable residues in proteins is extended to include the effect of non-proteinaceous ligands on protein pK(a) values as well as predict the change in pK(a) values of ionizable groups on the ligand itself. This new version of PROPKA (PROPKA 2.0) is, as much as possible, developed by adapting the empirical rules underlying PROPKA 1.0 to ligand functional groups. Thus, the speed of PROPKA is retained, so that the pK(a) values of all ionizable groups are computed in a matter of seconds for most proteins. This adaptation is validated by comparing PROPKA 2.0 predictions to experimental data for 26 protein-ligand complexes including trypsin, thrombin, three pepsins, HIV-1 protease, chymotrypsin, xylanase, hydroxynitrile lyase, and dihydrofolate reductase. For trypsin and thrombin, large protonation state changes (|n| > 0.5) have been observed experimentally for 4 out of 14 ligand complexes. PROPKA 2.0 and Klebe's PEOE approach (Czodrowski P et al. J Mol Biol 2007;367:1347-1356) both identify three of the four large protonation state changes. The protonation state changes due to plasmepsin II, cathepsin D and endothiapepsin binding to pepstatin are predicted to within 0.4 proton units at pH 6.5 and 7.0, respectively. The PROPKA 2.0 results indicate that structural changes due to ligand binding contribute significantly to the proton uptake/release, as do residues far away from the binding site, primarily due to the change in the local environment of a particular residue and hence the change in the local hydrogen bonding network. Overall the results suggest that PROPKA 2.0 provides a good description of the protein-ligand interactions that have an important effect on the pK(a) values of titratable groups, thereby permitting fast and accurate determination of the protonation states of key residues and ligand functional groups within the binding or active site of a protein.

971 citations

Journal ArticleDOI
TL;DR: Several systems of seemingly quite different nature and of increasing complexity, such as Grotthuss diffusion in water, excited-state proton-transfer in solution, phase transitions in ice, and protonated water networks in the membrane protein bacteriorhodopsin, are discussed in the realms of a unifying viewpoint.
Abstract: In the last decade, ab initio simulations and especially Car-Parrinello molecular dynamics have significantly contributed to the improvement of our understanding of both the physical and chemical properties of water, ice, and hydrogen-bonded systems in general. At the heart of this family of in silico techniques lies the crucial idea of computing the many-body interactions by solving the electronic structure problem "on the fly" as the simulation proceeds, which circumvents the need for pre-parameterized potential models. In particular, the field of proton transfer in hydrogen-bonded networks greatly benefits from these technical advances. Here, several systems of seemingly quite different nature and of increasing complexity, such as Grotthuss diffusion in water, excited-state proton-transfer in solution, phase transitions in ice, and protonated water networks in the membrane protein bacteriorhodopsin, are discussed in the realms of a unifying viewpoint.

775 citations

Journal ArticleDOI
TL;DR: The weak attractions to the confining wall, combined with strong interactions between water molecules, permit exceptionally rapid water flow, exceeding expectations from macroscopic hydrodynamics by several orders of magnitude.
Abstract: Water molecules confined to nonpolar pores and cavities of nanoscopic dimensions exhibit highly unusual properties. Water filling is strongly cooperative, with the possible coexistence of filled and empty states and sensitivity to small perturbations of the pore polarity and solvent conditions. Confined water molecules form tightly hydrogen-bonded wires or clusters. The weak attractions to the confining wall, combined with strong interactions between water molecules, permit exceptionally rapid water flow, exceeding expectations from macroscopic hydrodynamics by several orders of magnitude. The proton mobility along 1D water wires also substantially exceeds that in the bulk. Proteins appear to exploit these unusual properties of confined water in their biological function (e.g., to ensure rapid water flow in aquaporins or to gate proton flow in proton pumps and enzymes). The unusual properties of water in nonpolar confinement are also relevant to the design of novel nanofluidic and molecular separation devices or fuel cells.

656 citations

Journal ArticleDOI
TL;DR: This review considers the current state of simulations of electrostatic energies in macromolecules as well as the early developments of this field and focuses on the relationship between microscopic and macroscopic models, considering the convergence problems of the microscopic models and the fact that the dielectric 'constants' in semimacroscopic models depend on the definition and the specific treatment.
Abstract: Electrostatic energies provide what is perhaps the most effective tool for structure–function correlation of biological molecules. This review considers the current state of simulations of electrostatic energies in macromolecules as well as the early developments of this field. We focus on the relationship between microscopic and macroscopic models, considering the convergence problems of the microscopic models and the fact that the dielectric ‘constants’ in semimacroscopic models depend on the definition and the specific treatment. The advances and the challenges in the field are illustrated considering a wide range of functional properties including pKa's, redox potentials, ion and proton channels, enzyme catalysis, ligand binding and protein stability. We conclude by pointing out that, despite the current problems and the significant misunderstandings in the field, there is an overall progress that should lead eventually to quantitative descriptions of electrostatic effects in proteins and thus to quantitative descriptions of the function of proteins. © 2006 Elsevier B.V. All rights reserved.

502 citations