scispace - formally typeset
Search or ask a question
Author

Antonella Pragliola

Bio: Antonella Pragliola is an academic researcher from Baylor College of Medicine. The author has contributed to research in topics: Kallmann syndrome & Homology (biology). The author has an hindex of 5, co-authored 6 publications receiving 1111 citations. Previous affiliations of Antonella Pragliola include International Institute of Minnesota.

Papers
More filters
Journal ArticleDOI
10 Oct 1991-Nature
TL;DR: A gene has now been isolated from the critical region on Xp22.3 to which Kallmann's syndrome locus has been assigned: this gene escapes X inactivation, has a homologue on the Y chromosome, and shows an unusual pattern of conservation across species.
Abstract: Kallmann's syndrome (clinically characterized by hypogonadotropic hypogonadism and inability to smell) is caused by a defect in the migration of olfactory neurons, and neurons producing hypothalamic gonadotropin-releasing hormone. A gene has now been isolated from the critical region on Xp22.3 to which the syndrome locus has been assigned: this gene escapes X inactivation, has a homologue on the Y chromosome, and shows an unusual pattern of conservation across species. The predicted protein has significant similarities with proteins involved in neural cell adhesion and axonal pathfinding, as well as with protein kinases and phosphatases, which suggests that this gene could have a specific role in neuronal migration.

794 citations

Journal ArticleDOI
TL;DR: Kallmann's syndrome is an inherited disorder characterized by hypogonadism and anosmia as discussed by the authors, which is due to hypoplasia or aplasia of the olfactory bulbs and tracts.
Abstract: KALLMANN'S SYNDROME is an inherited disorder characterized by hypogonadism and anosmia.1 The hypogonadism is due to deficiency of gonadotropin-releasing hormone (GnRH),2 and the anosmia is due to hypoplasia or aplasia of the olfactory bulbs and tracts.3 , 4 In addition to hypogonadotropic hypogonadism and anosmia, other abnormalities may be present in patients with Kallmann's syndrome. They include neurologic deficits such as synkinesia,1 , 5 spatial attentional abnormalities,6 spastic paraplegia,7 cerebellar dysfunction, gaze-evoked horizontal nystagmus, pes cavus,5 , 8 mental retardation,9 color-vision disturbance and hearing loss,10 and other somatic defects, such as unilateral renal agenesis,9 horseshoe kidney,11 cryptorchidism,12 and cleft lip and palate.10 Several of these abnormalities . . .

161 citations

Journal ArticleDOI
TL;DR: Comparative analysis of X/Y sequence identity at several loci on Xp22.3 and Yq11.2 suggests that the homology between these two regions is the result of a complex series of events which occurred in the recent evolution of sex chromosomes.
Abstract: The recently identified gene for X–linked Kallmann syndrome (hypogonadotropic hypogonadism and anosmia) has a closely related homologue on the Y chromosome. The X and Y copies of this gene are located in a large region of X/Y homology, on Xp22.3 and Yq11.2, respectively. Comparison of the structure of the X–linked Kallmann syndrome gene and its Y homologue shed light on the evolutionary history of this region of the human sex chromosomes. Our data show that the Y homologue is not functional. Comparative analysis of X/Y sequence identity at several loci on Xp22.3 and Yq11.2 suggests that the homology between these two regions is the result of a complex series of events which occurred in the recent evolution of sex chromosomes.

50 citations

Journal ArticleDOI
TL;DR: Using techniques of cross-species conservation and hybridization, exon trapping, and cDNA selection, four known genes or members of gene families are identified--caltractin, a member of the gamma-aminobutyric acid (GABAA) receptor gene family, aMember of the melanoma antigen gene (MAGE) family, and several members of the murine-specific, X-linked lymphocyte regulated gene (Xlr3) family.
Abstract: The X-linked developmental mouse mutations bare patches (Bpa) and striated {Str) may be homologous to human X-linked dominant chondrodysplasia punctata (CDPX2) and incontinentia pigmenti (IP2), respectively, based on their genetic mapping and clinical phenotypes. Bpa and Str have been localized to an overlapping critical region of 600 kb that demonstrates conserved gene order with loci in human Xq28 between DXSII04 and DXS52. As part of efforts to isolate the genes involved in these disorders, we have begun to develop a comparative transcription map spanning this region in both species. Using techniques of cross-species conservation and hybridization, exon trapping, and cDNA selection we have identified four known genes or members of gene families--caltractin, a member of the ~/-aminobutyric acid (GABAA) receptor gene family, a member of the melanoma antigen gene (MAGE) family, and several members of the murine-specific, X-linked lymphocyte regulated gene (Xlr3) family. Trapped exons and, in some cases, longer cDNAs have been isolated for potentially 7-9 additional genes. One cDNA demonstrates highly significant homology with members of the Kriippel family of zinc finger transcription factors. A second novel cDNA demonstrates homology at the 3' end of the predicted amino acid sequence to a LIM domain consensus. Gene order appears conserved among those cDNAs determined to be present in both human and mouse. Three of the murine transcripts appear to be present in multiple copies within the Bpa/Str critical region and could be associated with a predisposition to genomic rearrangements. Reverse trancriptase PCR (RT-PCR) and Northern analyses demonstrate that several of the transcripts are expressed in mid-gestation murine embryos and neonatal skin, making them candidates for the Bpa and Str mutations and their respective homologous human disorders.

41 citations


Cited by
More filters
Journal ArticleDOI
15 Nov 1996-Science
TL;DR: Evidence is accumulating that these mechanisms act simultaneously and in a coordinated manner to direct pathfinding and that they are mediated by mechanistically and evolutionarily conserved ligand-receptor systems.
Abstract: Neuronal growth cones navigate over long distances along specific pathways to find their correct targets. The mechanisms and molecules that direct this pathfinding are the topics of this review. Growth cones appear to be guided by at least four different mechanisms: contact attraction, chemoattraction, contact repulsion, and chemorepulsion. Evidence is accumulating that these mechanisms act simultaneously and in a coordinated manner to direct pathfinding and that they are mediated by mechanistically and evolutionarily conserved ligand-receptor systems.

3,166 citations

Journal ArticleDOI
TL;DR: Puberty is initiated when gonadotropin-releasing hormone begins to be secreted by the hypothalamus, and complementary genetic approaches in humans and mice identified genetic factors that determine the onset of puberty.
Abstract: Background Puberty, a complex biologic process involving sexual development, accelerated linear growth, and adrenal maturation, is initiated when gonadotropin-releasing hormone begins to be secreted by the hypothalamus. We conducted studies in humans and mice to identify the genetic factors that determine the onset of puberty. Methods We used complementary genetic approaches in humans and in mice. A consanguineous family with members who lacked pubertal development (idiopathic hypogonadotropic hypogonadism) was examined for mutations in a candidate gene, GPR54, which encodes a G protein–coupled receptor. Functional differences between wild-type and mutant GPR54 were examined in vitro. In parallel, a Gpr54-deficient mouse model was created and phenotyped. Responsiveness to exogenous gonadotropin-releasing hormone was assessed in both the humans and the mice. Results Affected patients in the index pedigree were homozygous for an L148S mutation in GPR54, and an unrelated proband with idiopathic hypogonadotro...

2,253 citations

Journal ArticleDOI
TL;DR: The present study shows that loss of function of GPR54 is a cause of IHH, and it identifies GPR 54 and possibly KiSS1 protein-derived peptide as playing a major and previously unsuspected role in the physiology of the gonadotropic axis.
Abstract: Hypogonadotropic hypogonadism is defined as a deficiency of the pituitary secretion of follicle-stimulating hormone and luteinizing hormone, which results in the impairment of pubertal maturation and of reproductive function. In the absence of pituitary or hypothalamic anatomical lesions and of anosmia (Kallmann syndrome), hypogonadotropic hypogonadism is referred to as isolated hypogonadotropic hypogonadism (IHH). A limited number of IHH cases are due to loss-of-function mutations of the gonadotropin-releasing hormone receptor. To identify additional gene defects leading to IHH, a large consanguineous family with five affected siblings and with a normal gonadotropin-releasing hormone receptor coding sequence was studied. Homozygosity whole-genome mapping allowed the localization of a new locus within the short arm of chromosome 19 (19p13). Sequencing of several genes localized within this region showed that all affected siblings of the family carried a homozygous deletion of 155 nucleotides in the GPR54 gene. This deletion encompassed the splicing acceptor site of intron 4-exon 5 junction and part of exon 5. The deletion was absent or present on only one allele in unaffected family members. GPR54 has been initially identified as an orphan G protein-coupled receptor with 40% homology to galanin receptors. Recently, a 54-aa peptide derived from the KiSS1 protein was identified as a ligand of GPR54. The present study shows that loss of function of GPR54 is a cause of IHH, and it identifies GPR54 and possibly KiSS1 protein-derived peptide as playing a major and previously unsuspected role in the physiology of the gonadotropic axis.

2,147 citations

Journal ArticleDOI
TL;DR: The 22 members of the fibroblast growth factor (FGF) family of growth factors mediate their cellular responses by binding to and activating the different isoforms encoded by the four receptor tyrosine kinases (RTKs) designated FGFR1, FGFR2,FGFR3 and FGFR4.

1,846 citations

Journal ArticleDOI
20 Apr 1995-Nature
TL;DR: The reeler phenotype seems to reflect a failure of early events associated with brain lamination which are normally controlled by reelin.
Abstract: The autosomal recessive mouse mutation reeler leads to impaired motor coordination, tremors and ataxia. Neurons in affected mice fail to reach their correct locations in the developing brain, disrupting the organization of the cerebellar and cerebral cortices and other laminated regions. Here we use a previously characterized reeler allele (rl(tg)) to close a gene, reelin, deleted in two reeler alleles. Normal but not mutant mice express reelin in embryonic and postnatal neurons during periods of neuronal migration. The encoded protein resembles extracellular matrix proteins involved in cell adhesion. The reeler phenotype thus seems to reflect a failure of early events associated with brain lamination which are normally controlled by reelin.

1,682 citations