scispace - formally typeset
Search or ask a question
Author

Antonio Bicchi

Bio: Antonio Bicchi is an academic researcher from Istituto Italiano di Tecnologia. The author has contributed to research in topics: Robot & Haptic technology. The author has an hindex of 68, co-authored 608 publications receiving 22079 citations. Previous affiliations of Antonio Bicchi include University of Bologna & Massachusetts Institute of Technology.


Papers
More filters
Proceedings ArticleDOI
24 Apr 2000
TL;DR: This paper surveys the field of robotic grasping and the work that has been done in this area over the last two decades, with a slight bias toward the development of the theoretical framework and analytical results.
Abstract: In this paper, we survey the field of robotic grasping and the work that has been done in this area over the last two decades, with a slight bias toward the development of the theoretical framework and analytical results in this area.

1,080 citations

Journal ArticleDOI
TL;DR: A classification based on the principles through which the variable stiffness and damping are achieved is proposed and allows for designers of new devices to orientate and take inspiration and users of VIA's to be guided in the design and implementation process for their targeted application.

876 citations

Journal ArticleDOI
01 Dec 2000
TL;DR: An attempt at summarizing the evolution and the state of the art in the field of robot hands is made and arguments are presented in favor of a -minimalistic" attitude in the design of hands for practical applications.
Abstract: In this paper, an attempt at summarizing the evolution and the state of the art in the field of robot hands is made. In such exposition, a critical evaluation of what in the author's view are the leading ideas and emerging trends is privileged with respect to exhaustiveness of citations. The survey is focused mainly on three types of functional requirements a machine hand can be assigned in an artificial system, namely, manipulative dexterity, grasp robustness, and human operability. A basic distinction is made between hands designed for mimicking the human anatomy and physiology,and hands designed to meet restricted, practical requirements. In the latter domain, arguments are presented in favor of a -minimalistic" attitude in the design of hands for practical applications, i.e., use the least number of actuators, the simplest set of sensors, etc., for a given task. To achieve this rather obvious engineering goal is a challenge to our community. The paper illustrates some of the new sometimes difficult, problems that are brought about by building and controlling simpler, more practical devices.

813 citations

Journal ArticleDOI
TL;DR: The present atlas is a result of the EURON perspective research project “Physical Human–Robot Interaction in anthropic DOMains (PHRIDOM)”, aimed at charting the new territory of pHRI, and constitutes the scientific basis for the ongoing STReP project ‘Physical Human-Robots Interaction: depENDability and Safety (PHRIENDS’.

699 citations

Journal ArticleDOI
TL;DR: In this paper, the authors considered the problem of designing joint-actuation mechanisms that can allow fast and accurate operation of a robot arm, while guaranteeing a suitably limited level of injury risk.
Abstract: This article considered the problem of designing joint-actuation mechanisms that can allow fast and accurate operation of a robot arm, while guaranteeing a suitably limited level of injury risk. Different approaches to the problem were presented, and a method of performance evaluation was proposed based on minimum-time optimal control with safety constraints. The variable stiffness transmission (VST) scheme was found to be one of a few different possible schemes that allows the most flexibility and potential performance. Some aspects related to the implementation of the mechanics and control of VST actuation were also reported.

620 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal Article
TL;DR: This book by a teacher of statistics (as well as a consultant for "experimenters") is a comprehensive study of the philosophical background for the statistical design of experiment.
Abstract: THE DESIGN AND ANALYSIS OF EXPERIMENTS. By Oscar Kempthorne. New York, John Wiley and Sons, Inc., 1952. 631 pp. $8.50. This book by a teacher of statistics (as well as a consultant for \"experimenters\") is a comprehensive study of the philosophical background for the statistical design of experiment. It is necessary to have some facility with algebraic notation and manipulation to be able to use the volume intelligently. The problems are presented from the theoretical point of view, without such practical examples as would be helpful for those not acquainted with mathematics. The mathematical justification for the techniques is given. As a somewhat advanced treatment of the design and analysis of experiments, this volume will be interesting and helpful for many who approach statistics theoretically as well as practically. With emphasis on the \"why,\" and with description given broadly, the author relates the subject matter to the general theory of statistics and to the general problem of experimental inference. MARGARET J. ROBERTSON

13,333 citations

Journal ArticleDOI
06 Jun 1986-JAMA
TL;DR: The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or her own research.
Abstract: I have developed "tennis elbow" from lugging this book around the past four weeks, but it is worth the pain, the effort, and the aspirin. It is also worth the (relatively speaking) bargain price. Including appendixes, this book contains 894 pages of text. The entire panorama of the neural sciences is surveyed and examined, and it is comprehensive in its scope, from genomes to social behaviors. The editors explicitly state that the book is designed as "an introductory text for students of biology, behavior, and medicine," but it is hard to imagine any audience, interested in any fragment of neuroscience at any level of sophistication, that would not enjoy this book. The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or

7,563 citations

Book
22 Mar 1994
TL;DR: In this paper, the authors present a detailed overview of the history of multifingered hands and dextrous manipulation, and present a mathematical model for steerable and non-driveable hands.
Abstract: INTRODUCTION: Brief History. Multifingered Hands and Dextrous Manipulation. Outline of the Book. Bibliography. RIGID BODY MOTION: Rigid Body Transformations. Rotational Motion in R3. Rigid Motion in R3. Velocity of a Rigid Body. Wrenches and Reciprocal Screws. MANIPULATOR KINEMATICS: Introduction. Forward Kinematics. Inverse Kinematics. The Manipulator Jacobian. Redundant and Parallel Manipulators. ROBOT DYNAMICS AND CONTROL: Introduction. Lagrange's Equations. Dynamics of Open-Chain Manipulators. Lyapunov Stability Theory. Position Control and Trajectory Tracking. Control of Constrained Manipulators. MULTIFINGERED HAND KINEMATICS: Introduction to Grasping. Grasp Statics. Force-Closure. Grasp Planning. Grasp Constraints. Rolling Contact Kinematics. HAND DYNAMICS AND CONTROL: Lagrange's Equations with Constraints. Robot Hand Dynamics. Redundant and Nonmanipulable Robot Systems. Kinematics and Statics of Tendon Actuation. Control of Robot Hands. NONHOLONOMIC BEHAVIOR IN ROBOTIC SYSTEMS: Introduction. Controllability and Frobenius' Theorem. Examples of Nonholonomic Systems. Structure of Nonholonomic Systems. NONHOLONOMIC MOTION PLANNING: Introduction. Steering Model Control Systems Using Sinusoids. General Methods for Steering. Dynamic Finger Repositioning. FUTURE PROSPECTS: Robots in Hazardous Environments. Medical Applications for Multifingered Hands. Robots on a Small Scale: Microrobotics. APPENDICES: Lie Groups and Robot Kinematics. A Mathematica Package for Screw Calculus. Bibliography. Index Each chapter also includes a Summary, Bibliography, and Exercises

6,592 citations

MonographDOI
01 Jan 2006
TL;DR: This coherent and comprehensive book unifies material from several sources, including robotics, control theory, artificial intelligence, and algorithms, into planning under differential constraints that arise when automating the motions of virtually any mechanical system.
Abstract: Planning algorithms are impacting technical disciplines and industries around the world, including robotics, computer-aided design, manufacturing, computer graphics, aerospace applications, drug design, and protein folding. This coherent and comprehensive book unifies material from several sources, including robotics, control theory, artificial intelligence, and algorithms. The treatment is centered on robot motion planning but integrates material on planning in discrete spaces. A major part of the book is devoted to planning under uncertainty, including decision theory, Markov decision processes, and information spaces, which are the “configuration spaces” of all sensor-based planning problems. The last part of the book delves into planning under differential constraints that arise when automating the motions of virtually any mechanical system. Developed from courses taught by the author, the book is intended for students, engineers, and researchers in robotics, artificial intelligence, and control theory as well as computer graphics, algorithms, and computational biology.

6,340 citations