scispace - formally typeset
Search or ask a question
Author

Antonio Cava

Bio: Antonio Cava is an academic researcher from University of Geneva. The author has contributed to research in topics: Galaxy & Redshift. The author has an hindex of 85, co-authored 303 publications receiving 23459 citations. Previous affiliations of Antonio Cava include University of Milan & Max Planck Society.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the relative contribution of star formation rate (SFR)-driven and starburst-driven galaxies to the global SFR density in the redshift interval 1.5 1000 M ☉ yr-1 was quantified.
Abstract: Two main modes of star formation are know to control the growth of galaxies: a relatively steady one in disk-like galaxies, defining a tight star formation rate (SFR)-stellar mass sequence, and a starburst mode in outliers to such a sequence which is generally interpreted as driven by merging. Such starburst galaxies are rare but have much higher SFRs, and it is of interest to establish the relative importance of these two modes. PACS/Herschel observations over the whole COSMOS and GOODS-South fields, in conjunction with previous optical/near-IR data, have allowed us to accurately quantify for the first time the relative contribution of the two modes to the global SFR density in the redshift interval 1.5 1000 M ☉ yr-1, off-sequence sources significantly contribute to the SFR density (46% ± 20%). We conclude that merger-driven starbursts play a relatively minor role in the formation of stars in galaxies, whereas they may represent a critical phase toward the quenching of star formation and morphological transformation in galaxies.

927 citations

Journal ArticleDOI
Seb Oliver1, James J. Bock2, James J. Bock3, Bruno Altieri4, Alexandre Amblard5, V. Arumugam6, Herve Aussel7, Tom Babbedge8, Alexandre Beelen9, Matthieu Béthermin7, Matthieu Béthermin9, Andrew Blain3, Alessandro Boselli10, C. Bridge3, Drew Brisbin11, V. Buat10, Denis Burgarella10, N. Castro-Rodríguez12, N. Castro-Rodríguez13, Antonio Cava14, P. Chanial7, Michele Cirasuolo15, David L. Clements8, A. Conley16, L. Conversi4, Asantha Cooray3, Asantha Cooray17, C. D. Dowell3, C. D. Dowell2, Elizabeth Dubois1, Eli Dwek18, Simon Dye19, Stephen Anthony Eales20, David Elbaz7, Duncan Farrah1, A. Feltre21, P. Ferrero12, P. Ferrero13, N. Fiolet22, N. Fiolet9, M. Fox8, Alberto Franceschini21, Walter Kieran Gear20, E. Giovannoli10, Jason Glenn16, Yan Gong17, E. A. González Solares23, Matthew Joseph Griffin20, Mark Halpern24, Martin Harwit, Evanthia Hatziminaoglou, Sebastien Heinis10, Peter Hurley1, Ho Seong Hwang7, A. Hyde8, Edo Ibar15, O. Ilbert10, K. G. Isaak25, Rob Ivison6, Rob Ivison15, Guilaine Lagache9, E. Le Floc'h7, L. R. Levenson2, L. R. Levenson3, B. Lo Faro21, Nanyao Y. Lu3, S. C. Madden7, Bruno Maffei26, Georgios E. Magdis7, G. Mainetti21, Lucia Marchetti21, G. Marsden24, J. Marshall3, J. Marshall2, A. M. J. Mortier8, Hien Nguyen3, Hien Nguyen2, B. O'Halloran8, Alain Omont22, Mat Page27, P. Panuzzo7, Andreas Papageorgiou20, H. Patel8, Chris Pearson28, Chris Pearson29, Ismael Perez-Fournon12, Ismael Perez-Fournon13, Michael Pohlen20, Jonathan Rawlings27, Gwenifer Raymond20, Dimitra Rigopoulou30, Dimitra Rigopoulou29, L. Riguccini7, D. Rizzo8, Giulia Rodighiero21, Isaac Roseboom1, Isaac Roseboom6, Michael Rowan-Robinson8, M. Sanchez Portal4, Benjamin L. Schulz3, Douglas Scott24, Nick Seymour31, Nick Seymour27, D. L. Shupe3, A. J. Smith1, Jamie Stevens32, M. Symeonidis27, Markos Trichas33, K. E. Tugwell27, Mattia Vaccari21, Ivan Valtchanov4, Joaquin Vieira3, Marco P. Viero3, L. Vigroux22, Lifan Wang1, Robyn L. Ward1, Julie Wardlow17, G. Wright15, C. K. Xu3, Michael Zemcov2, Michael Zemcov3 
TL;DR: The Herschel Multi-tiered Extragalactic Survey (HerMES) is a legacy program designed to map a set of nested fields totalling ∼380deg^2 as mentioned in this paper.
Abstract: The Herschel Multi-tiered Extragalactic Survey (HerMES) is a legacy programme designed to map a set of nested fields totalling ∼380 deg^2. Fields range in size from 0.01 to ∼20 deg^2, using the Herschel-Spectral and Photometric Imaging Receiver (SPIRE) (at 250, 350 and 500 μm) and the Herschel-Photodetector Array Camera and Spectrometer (PACS) (at 100 and 160 μm), with an additional wider component of 270 deg^2 with SPIRE alone. These bands cover the peak of the redshifted thermal spectral energy distribution from interstellar dust and thus capture the reprocessed optical and ultraviolet radiation from star formation that has been absorbed by dust, and are critical for forming a complete multiwavelength understanding of galaxy formation and evolution. The survey will detect of the order of 100 000 galaxies at 5σ in some of the best-studied fields in the sky. Additionally, HerMES is closely coordinated with the PACS Evolutionary Probe survey. Making maximum use of the full spectrum of ancillary data, from radio to X-ray wavelengths, it is designed to facilitate redshift determination, rapidly identify unusual objects and understand the relationships between thermal emission from dust and other processes. Scientific questions HerMES will be used to answer include the total infrared emission of galaxies, the evolution of the luminosity function, the clustering properties of dusty galaxies and the properties of populations of galaxies which lie below the confusion limit through lensing and statistical techniques. This paper defines the survey observations and data products, outlines the primary scientific goals of the HerMES team, and reviews some of the early results.

852 citations

Journal ArticleDOI
TL;DR: In this paper, the relative contribution of star formation rate (SFR)-driven and starburst-driven galaxies to the global SFR density in the redshift interval 1.5 1000M(sun)/yr was quantified.
Abstract: Two main modes of star formation are know to control the growth of galaxies: a relatively steady one in disk-like galaxies, defining a tight star formation rate (SFR)-stellar mass sequence, and a starburst mode in outliers to such a sequence which is generally interpreted as driven by merging. Such starburst galaxies are rare but have much higher SFRs, and it is of interest to establish the relative importance of these two modes. PACS/Herschel observations over the whole COSMOS and GOODS-South fields, in conjunction with previous optical/near-IR data, have allowed us to accurately quantify for the first time the relative contribution of the two modes to the global SFR density in the redshift interval 1.5 1000M(sun)/yr, off-sequence sources significantly contribute to the SFR density (46+/-20%). We conclude that merger-driven starbursts play a relatively minor role for the formation of stars in galaxies, whereas they may represent a critical phase towards the quenching of star formation and morphological transformation in galaxies.

811 citations

Journal ArticleDOI
TL;DR: In this article, the dependence of galaxy structure (size and Sersic index) and mode of star formation (ΣSFR and SFRIR/SFRUV) on the position of galaxies in the star formation rate (SFR) versus mass diagram is analyzed.
Abstract: We analyze the dependence of galaxy structure (size and Sersic index) and mode of star formation (ΣSFR and SFRIR/SFRUV) on the position of galaxies in the star formation rate (SFR) versus mass diagram. Our sample comprises roughly 640,000 galaxies at z ~ 0.1, 130,000 galaxies at z ~ 1, and 36,000 galaxies at z ~ 2. Structural measurements for all but the z ~ 0.1 galaxies are based on Hubble Space Telescope imaging, and SFRs are derived using a Herschel-calibrated ladder of SFR indicators. We find that a correlation between the structure and stellar population of galaxies (i.e., a "Hubble sequence") is already in place since at least z ~ 2.5. At all epochs, typical star-forming galaxies on the main sequence are well approximated by exponential disks, while the profiles of quiescent galaxies are better described by de Vaucouleurs profiles. In the upper envelope of the main sequence, the relation between the SFR and Sersic index reverses, suggesting a rapid buildup of the central mass concentration in these starbursting outliers. We observe quiescent, moderately and highly star-forming systems to co-exist over an order of magnitude or more in stellar mass. At each mass and redshift, galaxies on the main sequence have the largest size. The rate of size growth correlates with specific SFR, and so does ΣSFR at each redshift. A simple model using an empirically determined star formation law and metallicity scaling, in combination with an assumed geometry for dust and stars, is able to relate the observed ΣSFR and SFRIR/SFRUV, provided a more patchy dust geometry is assumed for high-redshift galaxies.

731 citations

Journal ArticleDOI
Seb Oliver1, James J. Bock2, James J. Bock3, Bruno Altieri4, Alexandre Amblard5, V. Arumugam6, Herve Aussel7, Tom Babbedge8, Alexandre Beelen, Matthieu Béthermin7, Andrew Blain3, Alessandro Boselli9, C. Bridge3, Drew Brisbin10, V. Buat9, Denis Burgarella9, N. Castro-Rodríguez11, N. Castro-Rodríguez12, Antonio Cava13, P. Chanial7, Michele Cirasuolo14, David L. Clements8, A. Conley15, L. Conversi4, Asantha Cooray16, Asantha Cooray3, C. D. Dowell3, C. D. Dowell2, Elizabeth Dubois1, Eli Dwek17, Simon Dye18, Stephen Anthony Eales19, David Elbaz7, Duncan Farrah1, A. Feltre20, P. Ferrero11, P. Ferrero12, N. Fiolet21, M. Fox8, Alberto Franceschini20, Walter Kieran Gear19, E. Giovannoli9, Jason Glenn15, Yan Gong16, E. A. González Solares22, Matthew Joseph Griffin19, Mark Halpern23, Martin Harwit, Evanthia Hatziminaoglou, Sebastien Heinis9, Peter Hurley1, Ho Seong Hwang7, A. Hyde8, Edo Ibar14, O. Ilbert9, K. G. Isaak24, Rob Ivison6, Rob Ivison14, Guilaine Lagache, E. Le Floc'h7, L. R. Levenson3, L. R. Levenson2, B. Lo Faro20, Nanyao Y. Lu3, S. C. Madden7, Bruno Maffei25, Georgios E. Magdis7, G. Mainetti20, Lucia Marchetti20, G. Marsden23, J. Marshall3, J. Marshall2, A. M. J. Mortier8, Hien Nguyen2, Hien Nguyen3, B. O'Halloran8, Alain Omont21, Mat Page26, P. Panuzzo7, Andreas Papageorgiou19, H. Patel8, Chris Pearson27, Chris Pearson28, Ismael Perez-Fournon12, Ismael Perez-Fournon11, Michael Pohlen19, Jonathan Rawlings26, Gwenifer Raymond19, Dimitra Rigopoulou27, Dimitra Rigopoulou29, L. Riguccini7, D. Rizzo8, Giulia Rodighiero20, Isaac Roseboom6, Isaac Roseboom1, Michael Rowan-Robinson8, M. Sanchez Portal4, Benjamin L. Schulz3, Douglas Scott23, Nick Seymour26, Nick Seymour30, D. L. Shupe3, A. J. Smith1, Jamie Stevens31, M. Symeonidis26, Markos Trichas32, K. E. Tugwell26, Mattia Vaccari20, Ivan Valtchanov4, Joaquin Vieira3, Marco P. Viero3, L. Vigroux21, Lifan Wang1, Robyn L. Ward1, Julie Wardlow16, G. Wright14, C. K. Xu3, Michael Zemcov2, Michael Zemcov3 
TL;DR: The Herschel Multi-tiered Extragalactic Survey (HerMES) is a legacy program designed to map a set of nested fields totalling ~380 deg^2 as mentioned in this paper.
Abstract: The Herschel Multi-tiered Extragalactic Survey, HerMES, is a legacy program designed to map a set of nested fields totalling ~380 deg^2. Fields range in size from 0.01 to ~20 deg^2, using Herschel-SPIRE (at 250, 350 and 500 \mu m), and Herschel-PACS (at 100 and 160 \mu m), with an additional wider component of 270 deg^2 with SPIRE alone. These bands cover the peak of the redshifted thermal spectral energy distribution from interstellar dust and thus capture the re-processed optical and ultra-violet radiation from star formation that has been absorbed by dust, and are critical for forming a complete multi-wavelength understanding of galaxy formation and evolution. The survey will detect of order 100,000 galaxies at 5\sigma in some of the best studied fields in the sky. Additionally, HerMES is closely coordinated with the PACS Evolutionary Probe survey. Making maximum use of the full spectrum of ancillary data, from radio to X-ray wavelengths, it is designed to: facilitate redshift determination; rapidly identify unusual objects; and understand the relationships between thermal emission from dust and other processes. Scientific questions HerMES will be used to answer include: the total infrared emission of galaxies; the evolution of the luminosity function; the clustering properties of dusty galaxies; and the properties of populations of galaxies which lie below the confusion limit through lensing and statistical techniques. This paper defines the survey observations and data products, outlines the primary scientific goals of the HerMES team, and reviews some of the early results.

707 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The emcee algorithm as mentioned in this paper is a Python implementation of the affine-invariant ensemble sampler for Markov chain Monte Carlo (MCMC) proposed by Goodman & Weare (2010).
Abstract: We introduce a stable, well tested Python implementation of the affine-invariant ensemble sampler for Markov chain Monte Carlo (MCMC) proposed by Goodman & Weare (2010). The code is open source and has already been used in several published projects in the astrophysics literature. The algorithm behind emcee has several advantages over traditional MCMC sampling methods and it has excellent performance as measured by the autocorrelation time (or function calls per independent sample). One major advantage of the algorithm is that it requires hand-tuning of only 1 or 2 parameters compared to ~N2 for a traditional algorithm in an N-dimensional parameter space. In this document, we describe the algorithm and the details of our implementation. Exploiting the parallelism of the ensemble method, emcee permits any user to take advantage of multiple CPU cores without extra effort. The code is available online at http://dan.iel.fm/emcee under the GNU General Public License v2.

8,805 citations

Journal ArticleDOI
Peter A. R. Ade1, Nabila Aghanim2, C. Armitage-Caplan3, Monique Arnaud4  +324 moreInstitutions (70)
TL;DR: In this paper, the authors present the first cosmological results based on Planck measurements of the cosmic microwave background (CMB) temperature and lensing-potential power spectra, which are extremely well described by the standard spatially-flat six-parameter ΛCDM cosmology with a power-law spectrum of adiabatic scalar perturbations.
Abstract: This paper presents the first cosmological results based on Planck measurements of the cosmic microwave background (CMB) temperature and lensing-potential power spectra. We find that the Planck spectra at high multipoles (l ≳ 40) are extremely well described by the standard spatially-flat six-parameter ΛCDM cosmology with a power-law spectrum of adiabatic scalar perturbations. Within the context of this cosmology, the Planck data determine the cosmological parameters to high precision: the angular size of the sound horizon at recombination, the physical densities of baryons and cold dark matter, and the scalar spectral index are estimated to be θ∗ = (1.04147 ± 0.00062) × 10-2, Ωbh2 = 0.02205 ± 0.00028, Ωch2 = 0.1199 ± 0.0027, and ns = 0.9603 ± 0.0073, respectively(note that in this abstract we quote 68% errors on measured parameters and 95% upper limits on other parameters). For this cosmology, we find a low value of the Hubble constant, H0 = (67.3 ± 1.2) km s-1 Mpc-1, and a high value of the matter density parameter, Ωm = 0.315 ± 0.017. These values are in tension with recent direct measurements of H0 and the magnitude-redshift relation for Type Ia supernovae, but are in excellent agreement with geometrical constraints from baryon acoustic oscillation (BAO) surveys. Including curvature, we find that the Universe is consistent with spatial flatness to percent level precision using Planck CMB data alone. We use high-resolution CMB data together with Planck to provide greater control on extragalactic foreground components in an investigation of extensions to the six-parameter ΛCDM model. We present selected results from a large grid of cosmological models, using a range of additional astrophysical data sets in addition to Planck and high-resolution CMB data. None of these models are favoured over the standard six-parameter ΛCDM cosmology. The deviation of the scalar spectral index from unity isinsensitive to the addition of tensor modes and to changes in the matter content of the Universe. We find an upper limit of r0.002< 0.11 on the tensor-to-scalar ratio. There is no evidence for additional neutrino-like relativistic particles beyond the three families of neutrinos in the standard model. Using BAO and CMB data, we find Neff = 3.30 ± 0.27 for the effective number of relativistic degrees of freedom, and an upper limit of 0.23 eV for the sum of neutrino masses. Our results are in excellent agreement with big bang nucleosynthesis and the standard value of Neff = 3.046. We find no evidence for dynamical dark energy; using BAO and CMB data, the dark energy equation of state parameter is constrained to be w = -1.13-0.10+0.13. We also use the Planck data to set limits on a possible variation of the fine-structure constant, dark matter annihilation and primordial magnetic fields. Despite the success of the six-parameter ΛCDM model in describing the Planck data at high multipoles, we note that this cosmology does not provide a good fit to the temperature power spectrum at low multipoles. The unusual shape of the spectrum in the multipole range 20 ≲ l ≲ 40 was seen previously in the WMAP data and is a real feature of the primordial CMB anisotropies. The poor fit to the spectrum at low multipoles is not of decisive significance, but is an “anomaly” in an otherwise self-consistent analysis of the Planck temperature data.

7,060 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present the first results based on Planck measurements of the CMB temperature and lensing-potential power spectra, which are extremely well described by the standard spatially-flat six-parameter LCDM cosmology.
Abstract: We present the first results based on Planck measurements of the CMB temperature and lensing-potential power spectra. The Planck spectra at high multipoles are extremely well described by the standard spatially-flat six-parameter LCDM cosmology. In this model Planck data determine the cosmological parameters to high precision. We find a low value of the Hubble constant, H0=67.3+/-1.2 km/s/Mpc and a high value of the matter density parameter, Omega_m=0.315+/-0.017 (+/-1 sigma errors) in excellent agreement with constraints from baryon acoustic oscillation (BAO) surveys. Including curvature, we find that the Universe is consistent with spatial flatness to percent-level precision using Planck CMB data alone. We present results from an analysis of extensions to the standard cosmology, using astrophysical data sets in addition to Planck and high-resolution CMB data. None of these models are favoured significantly over standard LCDM. The deviation of the scalar spectral index from unity is insensitive to the addition of tensor modes and to changes in the matter content of the Universe. We find a 95% upper limit of r<0.11 on the tensor-to-scalar ratio. There is no evidence for additional neutrino-like relativistic particles. Using BAO and CMB data, we find N_eff=3.30+/-0.27 for the effective number of relativistic degrees of freedom, and an upper limit of 0.23 eV for the summed neutrino mass. Our results are in excellent agreement with big bang nucleosynthesis and the standard value of N_eff=3.046. We find no evidence for dynamical dark energy. Despite the success of the standard LCDM model, this cosmology does not provide a good fit to the CMB power spectrum at low multipoles, as noted previously by the WMAP team. While not of decisive significance, this is an anomaly in an otherwise self-consistent analysis of the Planck temperature data.

6,201 citations

Journal ArticleDOI
TL;DR: This document introduces a stable, well tested Python implementation of the affine-invariant ensemble sampler for Markov chain Monte Carlo (MCMC) proposed by Goodman & Weare (2010).
Abstract: We introduce a stable, well tested Python implementation of the affine-invariant ensemble sampler for Markov chain Monte Carlo (MCMC) proposed by Goodman & Weare (2010). The code is open source and has already been used in several published projects in the astrophysics literature. The algorithm behind emcee has several advantages over traditional MCMC sampling methods and it has excellent performance as measured by the autocorrelation time (or function calls per independent sample). One major advantage of the algorithm is that it requires hand-tuning of only 1 or 2 parameters compared to $\sim N^2$ for a traditional algorithm in an N-dimensional parameter space. In this document, we describe the algorithm and the details of our implementation and API. Exploiting the parallelism of the ensemble method, emcee permits any user to take advantage of multiple CPU cores without extra effort. The code is available online at this http URL under the MIT License.

5,293 citations

Journal ArticleDOI
TL;DR: In this article, the authors review the range of complementary techniques and theoretical tools that allow astronomers to map the cosmic history of star formation, heavy element production, and reionization of the Universe from the cosmic "dark ages" to the present epoch.
Abstract: Over the past two decades, an avalanche of data from multiwavelength imaging and spectroscopic surveys has revolutionized our view of galaxy formation and evolution. Here we review the range of complementary techniques and theoretical tools that allow astronomers to map the cosmic history of star formation, heavy element production, and reionization of the Universe from the cosmic "dark ages" to the present epoch. A consistent picture is emerging, whereby the star-formation rate density peaked approximately 3.5 Gyr after the Big Bang, at z~1.9, and declined exponentially at later times, with an e-folding timescale of 3.9 Gyr. Half of the stellar mass observed today was formed before a redshift z = 1.3. About 25% formed before the peak of the cosmic star-formation rate density, and another 25% formed after z = 0.7. Less than ~1% of today's stars formed during the epoch of reionization. Under the assumption of a universal initial mass function, the global stellar mass density inferred at any epoch matches reasonably well the time integral of all the preceding star-formation activity. The comoving rates of star formation and central black hole accretion follow a similar rise and fall, offering evidence for co-evolution of black holes and their host galaxies. The rise of the mean metallicity of the Universe to about 0.001 solar by z = 6, one Gyr after the Big Bang, appears to have been accompanied by the production of fewer than ten hydrogen Lyman-continuum photons per baryon, a rather tight budget for cosmological reionization.

3,104 citations