scispace - formally typeset
Search or ask a question
Author

Antonio G. Ravelo-García

Bio: Antonio G. Ravelo-García is an academic researcher from University of Las Palmas de Gran Canaria. The author has contributed to research in topics: Polysomnography & Obstructive sleep apnea. The author has an hindex of 7, co-authored 21 publications receiving 238 citations. Previous affiliations of Antonio G. Ravelo-García include Madeira Interactive Technologies Institute.

Papers
More filters
Journal ArticleDOI
01 Mar 2019
TL;DR: The objective of this review is to analyze already existing algorithms that have not been implemented on hardware but have had their performance verified by at least one experiment that aims to detect obstructive sleep apnea to predict trends.
Abstract: Sleep disorders are a common health condition that can affect numerous aspects of life. Obstructive sleep apnea is one of the most common disorders and is characterized by a reduction or cessation of airflow during sleep. In many countries, this disorder is usually diagnosed in sleep laboratories, by polysomnography, which is an expensive procedure involving much effort for the patient. Multiple systems have been proposed to address this situation, including performing the examination and analysis in the patient's home, using sensors to detect physiological signals that are automatically analyzed by algorithms. However, the precision of these devices is usually not enough to provide clinical diagnosis. Therefore, the objective of this review is to analyze already existing algorithms that have not been implemented on hardware but have had their performance verified by at least one experiment that aims to detect obstructive sleep apnea to predict trends. The performance of different algorithms and methods for apnea detection through the use of different sensors (pulse oximetry, electrocardiogram, respiration, sound, and combined approaches) has been evaluated. 84 original research articles published from 2003 to 2017 with the potential to be promising diagnostic tools have been selected to cover multiple solutions. This paper could provide valuable information for those researchers who want to carry out a hardware implementation of potential signal processing algorithms.

133 citations

Journal ArticleDOI
12 Nov 2019-Sensors
TL;DR: The goal of this work is to analyze the published research in the last decade, providing an answer to the research questions such as how to implement the different deep networks, what kind of pre-processing or feature extraction is needed, and the advantages and disadvantages of different kinds of networks.
Abstract: Sleep apnea is a sleep related disorder that significantly affects the population. Polysomnography, the gold standard, is expensive, inaccessible, uncomfortable and an expert technician is needed to score. Numerous researchers have proposed and implemented automatic scoring processes to address these issues, based on fewer sensors and automatic classification algorithms. Deep learning is gaining higher interest due to database availability, newly developed techniques, the possibility of producing machine created features and higher computing power that allows the algorithms to achieve better performance than the shallow classifiers. Therefore, the sleep apnea research has currently gained significant interest in deep learning. The goal of this work is to analyze the published research in the last decade, providing an answer to the research questions such as how to implement the different deep networks, what kind of pre-processing or feature extraction is needed, and the advantages and disadvantages of different kinds of networks. The employed signals, sensors, databases and implementation challenges were also considered. A systematic search was conducted on five indexing services from 2008–2018. A total of 255 papers were found and 21 were selected by considering the inclusion and exclusion criteria, using the preferred reporting items for systematic reviews and meta-analyses (PRISMA) approach.

86 citations

Journal ArticleDOI
TL;DR: The objective of this research is to review publications that show the performance of different devices for ambulatory diagnosis of sleep apnea, and to determine the sensors that provided the best results.

73 citations

Journal ArticleDOI
TL;DR: It was verified that despite the convenience and considerable popularity among the consumers of home health monitoring of devices, such as actigraphs, the validity of these tools regarding the estimation of sleep quality still needs to be systematically examined.
Abstract: Sleep quality is directly related to overall wellness and can reveal symptoms of several diseases. However, the term “sleep quality” still lacks a definitional consensus and is commonly assessed in sleep labs with polysomnography, comprising high costs, or through sleep questionnaires, a highly subjective technique. Multiple methods have been proposed to address the estimation of sleep quality, and devices were developed to conduct the examination in the subject’s home. The objective of this paper is to analyze the methods and the devices presented in the literature, assessing the development of objective markers that could lead to an improvement of the subjective sleep experience understanding, leading to developments in the treatment of sleep quality deficits. A systematic review was conducted, selecting research articles published from 2000 to 2018, and two research questions were formulated, specifically, “what methods for sleep quality assessment have been developed” and “what kind of measures are employed by the devices that have been developed to estimate sleep quality.” The research trend for the assessment of sleep quality is based on the sleep macrostructure, and it was verified that despite the convenience and considerable popularity among the consumers of home health monitoring of devices, such as actigraphs, the validity of these tools regarding the estimation of sleep quality still needs to be systematically examined. A detailed resume of the key findings and the identified challenges are presented, ascertaining the main gaps in the current state of the art.

53 citations

Journal ArticleDOI
TL;DR: The aim of this work is to develop and test multiple algorithms capable of automatically detecting the cyclic alternating pattern and to determine the features and classifiers that could be more relevant.
Abstract: The cyclic alternating pattern is a microstructure phasic event, present in the non-rapid eye movement sleep, which has been associated with multiple pathologies, and is a marker of sleep instability that is detected using the electroencephalogram. However, this technique produces a large quantity of information during a full night test, making the task of manually scoring all the cyclic alternating pattern cycles unpractical, with a high probability of miss classification. Therefore, the aim of this work is to develop and test multiple algorithms capable of automatically detecting the cyclic alternating pattern. The employed method first analyses the electroencephalogram signal to extract features that are used as inputs to a classifier that detects the activation (A phase) and quiescent (B phase) phases of this pattern. The output of the classifier was then applied to a finite state machine implementing the cyclic alternating pattern classification. A systematic review was performed to determine the features and classifiers that could be more relevant. Nine classifiers were tested using features selected by a sequential feature selection algorithm and features produced by principal component analysis. The best performance was achieved using a feed-forward neural network, producing, respectively, an average accuracy, sensitivity, specificity and area under the curve of 79, 76, 80% and 0.77 in the A and B phases classification. The cyclic alternating pattern detection accuracy, using the finite state machine, was of 79%.

27 citations


Cited by
More filters
Journal ArticleDOI
28 May 2021-Sensors
TL;DR: In this paper, a review of the recent literature on machine learning in agriculture is presented, where a plethora of machine learning algorithms are used, with those belonging to Artificial Neural Networks being more efficient.
Abstract: The digital transformation of agriculture has evolved various aspects of management into artificial intelligent systems for the sake of making value from the ever-increasing data originated from numerous sources. A subset of artificial intelligence, namely machine learning, has a considerable potential to handle numerous challenges in the establishment of knowledge-based farming systems. The present study aims at shedding light on machine learning in agriculture by thoroughly reviewing the recent scholarly literature based on keywords’ combinations of “machine learning” along with “crop management”, “water management”, “soil management”, and “livestock management”, and in accordance with PRISMA guidelines. Only journal papers were considered eligible that were published within 2018–2020. The results indicated that this topic pertains to different disciplines that favour convergence research at the international level. Furthermore, crop management was observed to be at the centre of attention. A plethora of machine learning algorithms were used, with those belonging to Artificial Neural Networks being more efficient. In addition, maize and wheat as well as cattle and sheep were the most investigated crops and animals, respectively. Finally, a variety of sensors, attached on satellites and unmanned ground and aerial vehicles, have been utilized as a means of getting reliable input data for the data analyses. It is anticipated that this study will constitute a beneficial guide to all stakeholders towards enhancing awareness of the potential advantages of using machine learning in agriculture and contributing to a more systematic research on this topic.

138 citations

Journal ArticleDOI
09 Nov 2020-Sensors
TL;DR: This review presents a multidisciplinary approach to respiratory monitoring, with the aim to improve the development and efficacy of respiratory monitoring services and favor synergies between different disciplines to accomplish this goal.
Abstract: Respiratory rate is a fundamental vital sign that is sensitive to different pathological conditions (e.g., adverse cardiac events, pneumonia, and clinical deterioration) and stressors, including emotional stress, cognitive load, heat, cold, physical effort, and exercise-induced fatigue. The sensitivity of respiratory rate to these conditions is superior compared to that of most of the other vital signs, and the abundance of suitable technological solutions measuring respiratory rate has important implications for healthcare, occupational settings, and sport. However, respiratory rate is still too often not routinely monitored in these fields of use. This review presents a multidisciplinary approach to respiratory monitoring, with the aim to improve the development and efficacy of respiratory monitoring services. We have identified thirteen monitoring goals where the use of the respiratory rate is invaluable, and for each of them we have described suitable sensors and techniques to monitor respiratory rate in specific measurement scenarios. We have also provided a physiological rationale corroborating the importance of respiratory rate monitoring and an original multidisciplinary framework for the development of respiratory monitoring services. This review is expected to advance the field of respiratory monitoring and favor synergies between different disciplines to accomplish this goal.

131 citations

Journal ArticleDOI
12 Nov 2019-Sensors
TL;DR: The goal of this work is to analyze the published research in the last decade, providing an answer to the research questions such as how to implement the different deep networks, what kind of pre-processing or feature extraction is needed, and the advantages and disadvantages of different kinds of networks.
Abstract: Sleep apnea is a sleep related disorder that significantly affects the population. Polysomnography, the gold standard, is expensive, inaccessible, uncomfortable and an expert technician is needed to score. Numerous researchers have proposed and implemented automatic scoring processes to address these issues, based on fewer sensors and automatic classification algorithms. Deep learning is gaining higher interest due to database availability, newly developed techniques, the possibility of producing machine created features and higher computing power that allows the algorithms to achieve better performance than the shallow classifiers. Therefore, the sleep apnea research has currently gained significant interest in deep learning. The goal of this work is to analyze the published research in the last decade, providing an answer to the research questions such as how to implement the different deep networks, what kind of pre-processing or feature extraction is needed, and the advantages and disadvantages of different kinds of networks. The employed signals, sensors, databases and implementation challenges were also considered. A systematic search was conducted on five indexing services from 2008–2018. A total of 255 papers were found and 21 were selected by considering the inclusion and exclusion criteria, using the preferred reporting items for systematic reviews and meta-analyses (PRISMA) approach.

86 citations

Journal ArticleDOI
TL;DR: An algorithm based on state-of-the-art deep learning models for automatically extracting features and detecting sleep apnea events in respiratory signals is presented, which provides per-epoch sensitivity and specificity scores comparable to the state of the art.
Abstract: Sleep apnea is one of the most common sleep disorders and the consequences of undiagnosed sleep apnea can be very severe, ranging from increased blood pressure to heart failure. However, many people are often unaware of their condition. The gold standard for diagnosing sleep apnea is an overnight polysomnography in a dedicated sleep laboratory. Yet, these tests are expensive and beds are limited as trained staff needs to analyze the entire recording. An automated detection method would allow a faster diagnosis and more patients to be analyzed. Most algorithms for automated sleep apnea detection use a set of human-engineered features, potentially missing important sleep apnea markers. In this paper, we present an algorithm based on state-of-the-art deep learning models for automatically extracting features and detecting sleep apnea events in respiratory signals. The algorithm is evaluated on the Sleep-Heart-Health-Study-1 dataset and provides per-epoch sensitivity and specificity scores comparable to the state of the art. Furthermore, when these predictions are mapped to the apnea–hypopnea index, a considerable improvement in per-patient scoring is achieved over conventional methods. This paper presents a powerful aid for trained staff to quickly diagnose sleep apnea.

83 citations

Journal ArticleDOI
TL;DR: This study proposes the automated identification of ECG signal affected from OSA employing an optimal two-band filter bank (FB) technique, and outperformed the existing systems developed using the same database and was found to be more efficient, robust, and easy to use.

64 citations