scispace - formally typeset
Search or ask a question
Author

Antonio García

Bio: Antonio García is an academic researcher from Polytechnic University of Valencia. The author has contributed to research in topics: Combustion & Diesel fuel. The author has an hindex of 37, co-authored 184 publications receiving 4103 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the study of different bottoming Rankine cycles with water-steam and/or ORC configurations in classical and innovative setups such as a waste heat recovery system in a Heavy Duty Diesel (HDD) Engine is presented.

202 citations

Journal ArticleDOI
TL;DR: In this paper, the authors thank the Universitat Politecnica de Valencia (PAID-06-09) and Generalitat Valenciana (GV/2010/045) for their valuable support.

148 citations

Journal ArticleDOI
TL;DR: In this article, the authors have been partially supported by the Ministerio de Educacin y Ciencia through Grant No. TRA2006-13782 through the Santiago Grisolia Program of Generalitat Valenciana.

143 citations

Journal ArticleDOI
TL;DR: In this article, an experimental and numerical study has been carried out to understand mixing and auto-ignition processes in RCCI combustion conditions, using gasoline and diesel as low and high reactivity fuels, respectively.

143 citations

Journal ArticleDOI
TL;DR: In this article, the authors acknowledge VOLVO Group Trucks Technology and TOTAL for supporting this research and propose VOLVO Trucks technology and VOLUME 7, 2019 VOLUME 6, 2019

139 citations


Cited by
More filters
Book ChapterDOI
01 Jan 1982
TL;DR: In this article, the authors discuss leading problems linked to energy that the world is now confronting and propose some ideas concerning possible solutions, and conclude that it is necessary to pursue actively the development of coal, natural gas, and nuclear power.
Abstract: This chapter discusses leading problems linked to energy that the world is now confronting and to propose some ideas concerning possible solutions. Oil deserves special attention among all energy sources. Since the beginning of 1981, it has merely been continuing and enhancing the downward movement in consumption and prices caused by excessive rises, especially for light crudes such as those from Africa, and the slowing down of worldwide economic growth. Densely-populated oil-producing countries need to produce to live, to pay for their food and their equipment. If the economic growth of the industrialized countries were to be 4%, even if investment in the rational use of energy were pushed to the limit and the development of nonpetroleum energy sources were also pursued actively, it would be extremely difficult to prevent a sharp rise in prices. It is evident that it is absolutely necessary to pursue actively the development of coal, natural gas, and nuclear power if a physical shortage of energy is not to block economic growth.

2,283 citations

Journal ArticleDOI
TL;DR: In this paper, the fatty acid (FA) profiles of 12 common biodiesel feedstocks were summarized, and it was shown that several fuel properties, including viscosity, specific gravity, cetane number, iodine value, and low temperature performance metrics are highly correlated with the average unsaturation of the FA profiles.
Abstract: Biodiesel is a renewable transportation fuel consisting of fatty acid methyl esters (FAME), generally produced by transesterification of vegetable oils and animal fats. In this review, the fatty acid (FA) profiles of 12 common biodiesel feedstocks were summarized. Considerable compositional variability exists across the range of feedstocks. For example, coconut, palm and tallow contain high amounts of saturated FA; while corn, rapeseed, safflower, soy, and sunflower are dominated by unsaturated FA. Much less information is available regarding the FA profiles of algal lipids that could serve as biodiesel feedstocks. However, some algal species contain considerably higher levels of poly-unsaturated FA than is typically found in vegetable oils. Differences in chemical and physical properties among biodiesel fuels can be explained largely by the fuels’ FA profiles. Two features that are especially influential are the size distribution and the degree of unsaturation within the FA structures. For the 12 biodiesel types reviewed here, it was shown that several fuel properties – including viscosity, specific gravity, cetane number, iodine value, and low temperature performance metrics – are highly correlated with the average unsaturation of the FAME profiles. Due to opposing effects of certain FAME structural features, it is not possible to define a single composition that is optimum with respect to all important fuel properties. However, to ensure satisfactory in-use performance with respect to low temperature operability and oxidative stability, biodiesel should contain relatively low concentrations of both long-chain saturated FAME and poly-unsaturated FAME.

1,527 citations

Journal Article
TL;DR: This is a paid internship where interns work directly to assist the Director of Marketing and Communications on various tasks relating to upcoming GRA events.
Abstract: OVERVIEW The GRA Marketing Internship Program is offered to students who are interested in gaining valuable work experience through efforts in marketing, membership, sales, and events. Interns work directly to assist the Director of Marketing and Communications on various tasks relating to upcoming GRA events. During this internship, students will work a minimum of 10 hours a week and a maximum of 20 hours a week. Students are encouraged to earn credit for their internship, however this is a paid internship. Students interested in obtaining credit for their internship must consult their academic advisor or the intern coordinator at their academic unit.

1,309 citations

Journal ArticleDOI
TL;DR: In this article, the effect of biodiesel on engine power, economy, durability and emissions including regulated and non-regulated emissions, and the corresponding effect factors are surveyed and analyzed in detail.
Abstract: As a renewable, sustainable and alternative fuel for compression ignition engines, biodiesel instead of diesel has been increasingly fueled to study its effects on engine performances and emissions in the recent 10 years. But these studies have been rarely reviewed to favor understanding and popularization for biodiesel so far. In this work, reports about biodiesel engine performances and emissions, published by highly rated journals in scientific indexes, were cited preferentially since 2000 year. From these reports, the effect of biodiesel on engine power, economy, durability and emissions including regulated and non-regulated emissions, and the corresponding effect factors are surveyed and analyzed in detail. The use of biodiesel leads to the substantial reduction in PM, HC and CO emissions accompanying with the imperceptible power loss, the increase in fuel consumption and the increase in NOx emission on conventional diesel engines with no or fewer modification. And it favors to reduce carbon deposit and wear of the key engine parts. Therefore, the blends of biodiesel with small content in place of petroleum diesel can help in controlling air pollution and easing the pressure on scarce resources without significantly sacrificing engine power and economy. However, many further researches about optimization and modification on engine, low temperature performances of engine, new instrumentation and methodology for measurements, etc., should be performed when petroleum diesel is substituted completely by biodiesel.

1,181 citations

Journal ArticleDOI
TL;DR: In this article, a comparison of pure and mixture working fluids' applications and a discussion of all types of expansion machines' operating characteristics for an effective organic Rankine cycle system is presented.
Abstract: How to effectively utilize low and medium temperature energy is one of the solutions to alleviate the energy shortage and environmental pollution problems. In the past twenty years, because of its feasibility and reliability, organic Rankine cycle has received widespread attentions and researches. In this paper, it reviews the selections of working fluids and expanders for organic Rankine cycle, including an analysis of the influence of working fluids' category and their thermodynamic and physical properties on the organic Rankine cycle's performance, a summary of pure and mixed working fluids' screening researches for organic Rankine cycle, a comparison of pure and mixture working fluids' applications and a discussion of all types of expansion machines' operating characteristics, which would be beneficial to select the optimal working fluid and suitable expansion machine for an effective organic Rankine cycle system.

1,101 citations