scispace - formally typeset
Search or ask a question
Author

Antonio González-Martín

Bio: Antonio González-Martín is an academic researcher from Complutense University of Madrid. The author has contributed to research in topics: Population & Allele frequency. The author has an hindex of 16, co-authored 46 publications receiving 1076 citations. Previous affiliations of Antonio González-Martín include Universidad Autónoma del Estado de Hidalgo & University of Barcelona.

Papers
More filters
Journal ArticleDOI
TL;DR: STRUCTURE results and admixture estimations by means of LEADMIX software in Mestizo populations demonstrated genetic heterogeneity or asymmetric admixture throughout Mexico, displaying an increasing North-to-South gradient of Amerindian ancestry, and vice versa regarding the European component.
Abstract: Over the last 500 years, admixture among Amerindians, Europeans, and Africans, princi- pally, has come to shape the present-day gene pool of Mexicans, particularly Mestizos, who represent about 93% of the total Mexican population. In this work, we analyze the genetic data of 13 combined DNA index sys- tem-short tandem repeats (CODIS-STRs) in 1,984 unre- lated Mestizos representing 10 population samples from different regions of Mexico, namely North, West, Cen- tral, and Southeast. The analysis of molecular variance (AMOVA) test demonstrated low but significant differ- entiation among Mestizos from different regions (FST 5 0.34%; P 5 0.0000). Although the spatial analysis of molecular variance (SAMOVA) predicted clustering Mestizo populations into four well-delimited groups, the main differentiation was observed between Northwest when compared with Central and Southeast regions. In addition, we included analysis of individuals of Amerin- dian (Purepechas), European (Huelva, Spain), and African (Fang) origin. Thus, STRUCTURE analysis was performed identifying three well-differentiated ances- tral populations (k 5 3). STRUCTURE results and admixture estimations by means of LEADMIX software in Mestizo populations demonstrated genetic heteroge- neity or asymmetric admixture throughout Mexico, displaying an increasing North-to-South gradient of Amerindian ancestry, and vice versa regarding the European component. Interestingly, this distribution of Amerindian ancestry roughly reflects pre-Hispanic Native-population density, particularly toward the Mesoamerican area. The forensic, epidemiological, and evolutionary implications of these findings are dis- cussed herein. Am J Phys Anthropol 139:284-294,

174 citations

Journal ArticleDOI
TL;DR: This is the first report of a common functional variant exclusive to Native American and descent populations, which is a major determinant of HDL-C levels and may have contributed to the adaptive evolution of Native American populations.
Abstract: It has been suggested that the higher susceptibility of Hispanics to metabolic disease is related to their Native American heritage. A frequent cholesterol transporter ABCA1 (ATP-binding cassette transporter A1) gene variant (R230C, rs9282541) apparently exclusive to Native American individuals was associated with low high-density lipoprotein cholesterol (HDL-C) levels, obesity and type 2 diabetes in Mexican Mestizos. We performed a more extensive analysis of this variant in 4405 Native Americans and 863 individuals from other ethnic groups to investigate genetic evidence of positive selection, to assess its functional effect in vitro and to explore associations with HDL-C levels and other metabolic traits. The C230 allele was found in 29 of 36 Native American groups, but not in European, Asian or African individuals. C230 was observed on a single haplotype, and C230-bearing chromosomes showed longer relative haplotype extension compared with other haplotypes in the Americas. Additionally, single-nucleotide polymorphism data from the Human Genome Diversity Panel Native American populations were enriched in significant integrated haplotype score values in the region upstream of the ABCA1 gene. Cells expressing the C230 allele showed a 27% cholesterol efflux reduction (P< 0.001), confirming this variant has a functional effect in vitro. Moreover, the C230 allele was associated with lower HDL-C levels (P = 1.77 x 10(-11)) and with higher body mass index (P = 0.0001) in the combined analysis of Native American populations. This is the first report of a common functional variant exclusive to Native American and descent populations, which is a major determinant of HDL-C levels and may have contributed to the adaptive evolution of Native American populations.

136 citations

Journal ArticleDOI
04 Sep 2003-Nature
TL;DR: Evidence of amodern Amerindian group from the Baja California Peninsula in Mexico, showing clearer affinities with Palaeoamerican remains than with modern Amerindians is presented, suggesting temporal continuity of the PalaeOamerican morphological pattern to the present.
Abstract: A current issue on the settlement of the Americas refers to the lack of morphological affinities between early Holocene human remains (Palaeoamericans) and modern Amerindian groups, as well as the degree of contribution of the former to the gene pool of the latter1,2,3,4,5,6. A different origin for Palaeoamericans and Amerindians is invoked to explain such a phenomenon3. Under this hypothesis, the origin of Palaeoamericans must be traced back to a common ancestor for Palaeoamericans and Australians, which departed from somewhere in southern Asia and arrived in the Australian continent and the Americas around 40,000 and 12,000 years before present, respectively. Most modern Amerindians are believed to be part of a second, morphologically differentiated migration3. Here we present evidence of a modern Amerindian group from the Baja California Peninsula in Mexico, showing clearer affinities with Palaeoamerican remains than with modern Amerindians. Climatic changes during the Middle Holocene probably generated the conditions for isolation from the continent, restricting the gene flow of the original group with northern populations, which resulted in the temporal continuity of the Palaeoamerican morphological pattern to the present.

130 citations

Journal ArticleDOI
TL;DR: Y-linked markers are suitable loci to analyze genetic diversity of human populations, offering knowledge of medical, forensic, and anthropological interest, and adding to the analysis data of Mexican Mestizos and Amerindians, and relevant worldwide populations.
Abstract: Y-linked markers are suitable loci to analyze genetic diversity of human populations, offering knowledge of medical, forensic, and anthropological interest. In a population sample of 206 Mestizo males from western Mexico, we analyzed two binary loci (M3 and YAP) and six Y-STRs, adding to the analysis data of Mexican Mestizos and Amerindians, and relevant worldwide populations. The paternal ancestry estimated in western Mexican-Mestizos was mainly European (60-64%), followed by Amerindian (25-21%), and African ( approximately 15%). Significant genetic heterogeneity was established between Mestizos from western (Jalisco State) and northern Mexico (Chihuahua State) compared with Mexicans from the center of the Mexican Republic (Mexico City), this attributable to higher European ancestry in western and northern than in central and southeast populations, where higher Amerindian ancestry was inferred. This genetic structure has important implications for medical and forensic purposes. Two different Pre-Hispanic evolutionary processes were evident. In Mesoamerican region, populations presented higher migration rate (N(m) = 24.76), promoting genetic homogeneity. Conversely, isolated groups from the mountains and canyons of the Western and Northern Sierra Madre (Huichols and Tarahumaras, respectively) presented a lower migration rate (N(m) = 10.27) and stronger genetic differentiation processes (founder effect and/or genetic drift), constituting a Pre-Hispanic population substructure. Additionally, Tarahumaras presented a higher frequency of Y-chromosomes without Q3 that was explained by paternal European admixture (15%) and, more interestingly, by a distinctive Native-American ancestry. In Purepechas, a special admixture process involving preferential integration of non-Purepecha women in their communities could explain contrary genetic evidences (autosomal vs. Y-chromosome) for this tribe.

107 citations

Journal ArticleDOI
TL;DR: Results obtained after the craniofacial analysis are in accordance with previous molecular and historical interpretations, providing evidence that admixture is a main microevolutionary agent influencing modern Mexican gene pool.
Abstract: An evolutionary, diachronic approach to the phenotypic craniofacial pattern arisen in a human population after high levels of admixture and gene flow was achieved by means of geometric morphometrics. Admixture has long been studied after molecular data. Nevertheless, few efforts have been made to explain the morphological outcome in human craniofacial samples. The Spanish-Amerindian contact can be considered a good scenario for such an analysis. Here we present a comparative analysis of craniofacial shape changes observed between two putative ancestor groups, Spanish and precontact Aztecs, and two diachronic admixed groups, corresponding to early and late colonial periods from the Mexico's Central Valley. Quantitative shape comparisons of Amerindian, Spanish, and admixed groups were used to test the expectations of quantitative genetics for admixture events. In its simplest form, this prediction states that an admixed group will present phenotypic values falling between those of both parental groups. Results show that, in general terms, although the human skull is a complex, integrated structure, the craniofacial morphology observed fits the theoretical expectations of quantitative genetics. Thus, it is predictive of population structure and history. In fact, results obtained after the craniofacial analysis are in accordance with previous molecular and historical interpretations, providing evidence that admixture is a main microevolutionary agent influencing modern Mexican gene pool. However, expectations are not straightforward when moderate shape changes are considered. Deviations detected at localized structures, such as the upper and lower face, highlight the evolution of a craniofacial pattern exclusively inherent to the admixed groups, indicating that quantitative characters might respond to admixture in a complicated, nondirectional way.

67 citations


Cited by
More filters
01 Jan 2009

3,235 citations

Journal ArticleDOI
13 Jul 2011-Nature
TL;DR: Medical genomics has focused almost entirely on those of European descent, but other ethnic groups must be studied to ensure that more people benefit, say researchers.
Abstract: Medical genomics has focused almost entirely on those of European descent. Other ethnic groups must be studied to ensure that more people benefit, say Carlos D. Bustamante, Esteban Gonzalez Burchard and Francisco M. De La Vega.

490 citations

Journal ArticleDOI
18 Jan 2017-Nature
TL;DR: The discovery of interbreeding between anatomically modern humans and extinct hominins and the development of an increasingly detailed description of the complex dispersal of modern humans out of Africa and their population expansion worldwide are among the breakthroughs.
Abstract: Advances in the sequencing and the analysis of the genomes of both modern and ancient peoples have facilitated a number of breakthroughs in our understanding of human evolutionary history. These include the discovery of interbreeding between anatomically modern humans and extinct hominins; the development of an increasingly detailed description of the complex dispersal of modern humans out of Africa and their population expansion worldwide; and the characterization of many of the genetic adaptions of humans to local environmental conditions. Our interpretation of the evolutionary history and adaptation of humans is being transformed by analyses of these new genomic data.

467 citations

Journal ArticleDOI
Maanasa Raghavan1, Matthias Steinrücken2, Matthias Steinrücken3, Kelley Harris3, Stephan Schiffels4, Simon Rasmussen5, Michael DeGiorgio6, Anders Albrechtsen1, Cristina Valdiosera7, Cristina Valdiosera1, María C. Ávila-Arcos1, María C. Ávila-Arcos8, Anna-Sapfo Malaspinas1, Anders Eriksson9, Anders Eriksson10, Ida Moltke1, Mait Metspalu11, Mait Metspalu12, Julian R. Homburger8, Jeffrey D. Wall13, Omar E. Cornejo14, J. Víctor Moreno-Mayar1, Thorfinn Sand Korneliussen1, Tracey Pierre1, Morten Rasmussen8, Morten Rasmussen1, Paula F. Campos1, Paula F. Campos15, Peter de Barros Damgaard1, Morten E. Allentoft1, John Lindo16, Ene Metspalu12, Ene Metspalu11, Ricardo Rodríguez-Varela17, Josefina Mansilla, Celeste Henrickson18, Andaine Seguin-Orlando1, Helena Malmström19, Thomas W. Stafford20, Thomas W. Stafford1, Suyash Shringarpure8, Andrés Moreno-Estrada8, Monika Karmin12, Monika Karmin11, Kristiina Tambets11, Anders Bergström4, Yali Xue4, Vera Warmuth21, Andrew D. Friend10, Joy S. Singarayer22, Paul J. Valdes23, Francois Balloux, Ilán Leboreiro, Jose Luis Vera, Héctor Rangel-Villalobos24, Davide Pettener25, Donata Luiselli25, Loren G. Davis26, Evelyne Heyer27, Christoph P. E. Zollikofer28, Marcia S. Ponce de León28, Colin Smith7, Vaughan Grimes29, Vaughan Grimes30, Kelly-Anne Pike29, Michael Deal29, Benjamin T. Fuller31, Bernardo Arriaza32, Vivien G. Standen32, Maria F. Luz, Francois Ricaut33, Niede Guidon, Ludmila P. Osipova34, Ludmila P. Osipova35, Mikhail Voevoda34, Mikhail Voevoda35, Olga L. Posukh34, Olga L. Posukh35, Oleg Balanovsky, Maria Lavryashina36, Yuri Bogunov, Elza Khusnutdinova35, Elza Khusnutdinova37, Marina Gubina, Elena Balanovska, Sardana A. Fedorova38, Sergey Litvinov11, Sergey Litvinov35, Boris Malyarchuk35, Miroslava Derenko35, M. J. Mosher39, David Archer40, Jerome S. Cybulski41, Jerome S. Cybulski42, Barbara Petzelt, Joycelynn Mitchell, Rosita Worl, Paul Norman8, Peter Parham8, Brian M. Kemp14, Toomas Kivisild10, Toomas Kivisild11, Chris Tyler-Smith4, Manjinder S. Sandhu43, Manjinder S. Sandhu4, Michael H. Crawford44, Richard Villems11, Richard Villems12, David Glenn Smith45, Michael R. Waters46, Ted Goebel46, John R. Johnson47, Ripan S. Malhi16, Mattias Jakobsson19, David J. Meltzer1, David J. Meltzer48, Andrea Manica10, Richard Durbin4, Carlos Bustamante8, Yun S. Song3, Rasmus Nielsen3, Eske Willerslev1 
21 Aug 2015-Science
TL;DR: The results suggest that there has been gene flow between some Native Americans from both North and South America and groups related to East Asians and Australo-Melanesians, the latter possibly through an East Asian route that might have included ancestors of modern Aleutian Islanders.
Abstract: How and when the Americas were populated remains contentious. Using ancient and modern genome-wide data, we found that the ancestors of all present-day Native Americans, including Athabascans and Amerindians, entered the Americas as a single migration wave from Siberia no earlier than 23 thousand years ago (ka) and after no more than an 8000-year isolation period in Beringia. After their arrival to the Americas, ancestral Native Americans diversified into two basal genetic branches around 13 ka, one that is now dispersed across North and South America and the other restricted to North America. Subsequent gene flow resulted in some Native Americans sharing ancestry with present-day East Asians (including Siberians) and, more distantly, Australo-Melanesians. Putative "Paleoamerican" relict populations, including the historical Mexican Pericues and South American Fuego-Patagonians, are not directly related to modern Australo-Melanesians as suggested by the Paleoamerican Model.

459 citations