scispace - formally typeset
Search or ask a question
Author

Antonio Lanata

Other affiliations: University of Pisa
Bio: Antonio Lanata is an academic researcher from University of Florence. The author has contributed to research in topics: Wearable computer & International Affective Picture System. The author has an hindex of 32, co-authored 134 publications receiving 3106 citations. Previous affiliations of Antonio Lanata include University of Pisa.


Papers
More filters
Journal ArticleDOI
TL;DR: A novel algorithm for the analysis of electrodermal activity (EDA) using methods of convex optimization is reported on, showing good performance of the proposed method and suggesting promising future applicability, e.g., in the field of affective computing.
Abstract: Goal: This paper reports on a novel algorithm for the analysis of electrodermal activity (EDA) using methods of convex optimization EDA can be considered as one of the most common observation channels of sympathetic nervous system activity, and manifests itself as a change in electrical properties of the skin, such as skin conductance (SC) Methods: The proposed model describes SC as the sum of three terms: the phasic component, the tonic component, and an additive white Gaussian noise term incorporating model prediction errors as well as measurement errors and artifacts This model is physiologically inspired and fully explains EDA through a rigorous methodology based on Bayesian statistics, mathematical convex optimization, and sparsity Results: The algorithm was evaluated in three different experimental sessions to test its robustness to noise, its ability to separate and identify stimulus inputs, and its capability of properly describing the activity of the autonomic nervous system in response to strong affective stimulation Significance: Results are very encouraging, showing good performance of the proposed method and suggesting promising future applicability, eg, in the field of affective computing

319 citations

Journal ArticleDOI
TL;DR: An automatic multiclass arousal/valence classifier is implemented comparing performance when extracted features from nonlinear methods are used as an alternative to standard features and results show that, when nonlinearly extracted features are used, the percentages of successful recognition dramatically increase.
Abstract: This paper reports on a new methodology for the automatic assessment of emotional responses. More specifically, emotions are elicited in agreement with a bidimensional spatial localization of affective states, that is, arousal and valence dimensions. A dedicated experimental protocol was designed and realized where specific affective states are suitably induced while three peripheral physiological signals, i.e., ElectroCardioGram (ECG), ElectroDermal Response (EDR), and ReSPiration activity (RSP), are simultaneously acquired. A group of 35 volunteers was presented with sets of images gathered from the International Affective Picture System (IAPS) having five levels of arousal and five levels of valence, including a neutral reference level in both. Standard methods as well as nonlinear dynamic techniques were used to extract sets of features from the collected signals. The goal of this paper is to implement an automatic multiclass arousal/valence classifier comparing performance when extracted features from nonlinear methods are used as an alternative to standard features. Results show that, when nonlinearly extracted features are used, the percentages of successful recognition dramatically increase. A good recognition accuracy (>;90 percent) after 40-fold cross-validation steps for both arousal and valence classes was achieved by using the Quadratic Discriminant Classifier (QDC).

216 citations

Journal ArticleDOI
TL;DR: A novel personalized probabilistic framework able to characterize the emotional state of a subject through the analysis of heartbeat dynamics exclusively is proposed, achieving an overall accuracy in recognizing four emotional states based on the circumplex model of affect.
Abstract: Emotion recognition through computational modeling and analysis of physiological signals has been widely investigated in the last decade. Most of the proposed emotion recognition systems require relatively long-time series of multivariate records and do not provide accurate real-time characterizations using short-time series. To overcome these limitations, we propose a novel personalized probabilistic framework able to characterize the emotional state of a subject through the analysis of heartbeat dynamics exclusively. The study includes thirty subjects presented with a set of standardized images gathered from the international affective picture system, alternating levels of arousal and valence. Due to the intrinsic nonlinearity and nonstationarity of the RR interval series, a specific point-process model was devised for instantaneous identification considering autoregressive nonlinearities up to the third-order according to the Wiener-Volterra representation, thus tracking very fast stimulus-response changes. Features from the instantaneous spectrum and bispectrum, as well as the dominant Lyapunov exponent, were extracted and considered as input features to a support vector machine for classification. Results, estimating emotions each 10 seconds, achieve an overall accuracy in recognizing four emotional states based on the circumplex model of affect of 79.29%, with 79.15% on the valence axis, and 83.55% on the arousal axis.

202 citations

Journal ArticleDOI
TL;DR: The field operational tests demonstrate that the UWB radar sensor detects the respiratory rate of person under test associated with sub-centimeter chest movements, allowing the continuous-time non-invasive monitoring of hospital patients and other people at risk of obstructive apneas such as babies in cot beds, or other respiratory diseases.
Abstract: An ultra wideband (UWB) system-on-chip radar sensor for respiratory rate monitoring has been realized in 90 nm CMOS technology and characterized experimentally. The radar testchip has been applied to the contactless detection of the respiration activity of adult and baby. The field operational tests demonstrate that the UWB radar sensor detects the respiratory rate of person under test (adult and baby) associated with sub-centimeter chest movements, allowing the continuous-time non-invasive monitoring of hospital patients and other people at risk of obstructive apneas such as babies in cot beds, or other respiratory diseases.

175 citations

Journal ArticleDOI
TL;DR: This paper reports on how emotional states elicited by affective sounds can be effectively recognized by means of estimates of Autonomic Nervous System (ANS) dynamics.
Abstract: This paper reports on how emotional states elicited by affective sounds can be effectively recognized by means of estimates of Autonomic Nervous System (ANS) dynamics. Specifically, emotional states are modeled as a combination of arousal and valence dimensions according to the well-known circumplex model of affect, whereas the ANS dynamics is estimated through standard and nonlinear analysis of Heart rate variability (HRV) exclusively, which is derived from the electrocardiogram (ECG). In addition, Lagged Poincare Plots of the HRV series were also taken into account. The affective sounds were gathered from the International Affective Digitized Sound System and grouped into four different levels of arousal (intensity) and two levels of valence (unpleasant and pleasant). A group of 27 healthy volunteers were administered with these standardized stimuli while ECG signals were continuously recorded. Then, those HRV features showing significant changes (p $ 0.05 from statistical tests) between the arousal and valence dimensions were used as input of an automatic classification system for the recognition of the four classes of arousal and two classes of valence. Experimental results demonstrated that a quadratic discriminant classifier, tested through Leave-One-Subject-Out procedure, was able to achieve a recognition accuracy of 84.72 percent on the valence dimension, and 84.26 percent on the arousal dimension.

160 citations


Cited by
More filters
Journal ArticleDOI

3,628 citations

01 Jan 2004
TL;DR: Comprehensive and up-to-date, this book includes essential topics that either reflect practical significance or are of theoretical importance and describes numerous important application areas such as image based rendering and digital libraries.
Abstract: From the Publisher: The accessible presentation of this book gives both a general view of the entire computer vision enterprise and also offers sufficient detail to be able to build useful applications. Users learn techniques that have proven to be useful by first-hand experience and a wide range of mathematical methods. A CD-ROM with every copy of the text contains source code for programming practice, color images, and illustrative movies. Comprehensive and up-to-date, this book includes essential topics that either reflect practical significance or are of theoretical importance. Topics are discussed in substantial and increasing depth. Application surveys describe numerous important application areas such as image based rendering and digital libraries. Many important algorithms broken down and illustrated in pseudo code. Appropriate for use by engineers as a comprehensive reference to the computer vision enterprise.

3,627 citations

Journal ArticleDOI
01 Jun 1959

3,442 citations

Journal ArticleDOI
TL;DR: In this paper, a review of wearable sensors and systems that are relevant to the field of rehabilitation is presented, focusing on health and wellness, safety, home rehabilitation, assessment of treatment efficacy, and early detection of disorders.
Abstract: The aim of this review paper is to summarize recent developments in the field of wearable sensors and systems that are relevant to the field of rehabilitation. The growing body of work focused on the application of wearable technology to monitor older adults and subjects with chronic conditions in the home and community settings justifies the emphasis of this review paper on summarizing clinical applications of wearable technology currently undergoing assessment rather than describing the development of new wearable sensors and systems. A short description of key enabling technologies (i.e. sensor technology, communication technology, and data analysis techniques) that have allowed researchers to implement wearable systems is followed by a detailed description of major areas of application of wearable technology. Applications described in this review paper include those that focus on health and wellness, safety, home rehabilitation, assessment of treatment efficacy, and early detection of disorders. The integration of wearable and ambient sensors is discussed in the context of achieving home monitoring of older adults and subjects with chronic conditions. Future work required to advance the field toward clinical deployment of wearable sensors and systems is discussed.

1,826 citations

Book ChapterDOI
E.R. Davies1
01 Jan 1990
TL;DR: This chapter introduces the subject of statistical pattern recognition (SPR) by considering how features are defined and emphasizes that the nearest neighbor algorithm achieves error rates comparable with those of an ideal Bayes’ classifier.
Abstract: This chapter introduces the subject of statistical pattern recognition (SPR). It starts by considering how features are defined and emphasizes that the nearest neighbor algorithm achieves error rates comparable with those of an ideal Bayes’ classifier. The concepts of an optimal number of features, representativeness of the training data, and the need to avoid overfitting to the training data are stressed. The chapter shows that methods such as the support vector machine and artificial neural networks are subject to these same training limitations, although each has its advantages. For neural networks, the multilayer perceptron architecture and back-propagation algorithm are described. The chapter distinguishes between supervised and unsupervised learning, demonstrating the advantages of the latter and showing how methods such as clustering and principal components analysis fit into the SPR framework. The chapter also defines the receiver operating characteristic, which allows an optimum balance between false positives and false negatives to be achieved.

1,189 citations