scispace - formally typeset
Search or ask a question
Author

Antonio M. Echavarren

Bio: Antonio M. Echavarren is an academic researcher from Rovira i Virgili University. The author has contributed to research in topics: Palladium & Catalysis. The author has an hindex of 65, co-authored 370 publications receiving 20141 citations. Previous affiliations of Antonio M. Echavarren include Complutense University of Madrid & Colorado State University.


Papers
More filters
Journal ArticleDOI
TL;DR: The proposed involvement of cyclopropyl metal carbenes of type 4 in the electrophilic activation of enynes by transition metals was first substantiated in reactions catalyzed by Pd(II), in which the initially formed cycloprostyl palladiumCarbenes undergo [4 + 2] cycloaddition with the double bond of the conjugate enyne.
Abstract: Gold salts and complexes have emerged in the past few years as the most powerful catalysts for electrophilic activation of alkynes toward a variety of nucleophiles under homogeneous conditions. In a simplified form, nucleophilic attack on the [AuL]-activated alkyne proceeds via π complexes 1 to give trans-alkenyl gold complexes of type 2 as intermediates (Scheme 1). This type of coordination is also a common theme in gold-catalyzed cycloisomerizations of enynes, in which the alkene function acts as the nucleophile. In the reaction of enynes with complexes of other transition metals, an Alder-ene cycloisomerization can take place by simultaneous coordination of the alkyne and the alkene to the metal followed by an oxidative cyclometalation. In contrast, this process does not occur for gold(I) since oxidative addition processes are not facile for this metal. 6 In addition, the [AuL] fragment, which is isolobal to H and HgL, adopts a linear coordination and binds to either the alkene or the alkyne. Thus, cycloisomerizations of enynes catalyzed by gold proceed by an initial coordination of the metal to the alkyne, and as illustrated in Scheme 2, the resulting complex 3 reacts with the alkene by either the 5-exo-dig or 6-endo-dig pathway to form the exoor endocyclopropyl gold carbene 4 or 5, respectively, as has been established with other electrophilic transition-metal complexes or halides MXn as catalysts. The proposed involvement of cyclopropyl metal carbenes of type 4 in the electrophilic activation of enynes by transition metals was first substantiated in reactions catalyzed by Pd(II), in which the initially formed cyclopropyl palladium carbenes undergo [4 + 2] cycloaddition with the double bond of the conjugate enyne. Strong evidence for the existence of cyclopropyl metal carbenes as intermediates was also obtained in the reaction of enynes bearing additional double bonds at the alkenyl chain with Ru(II) and Pt(II) catalysts. In these reactions, the cyclopropyl metal carbenes are trapped intramolecularly by the terminal alkene to give tetracycles containing two cyclopropanes. Gold(I) complexes usually surpass the reactivity shown by Pt(II) and other electrophilic metal salts and complexes for the activation of enynes. They are highly reactive yet uniquely selective Lewis acids that have a high affinity for π bonds. This high π-acidity is linked to relativistic effects, which reach a maximum in the periodic table with gold. However, on occasion, the stronger Lewis acidity of gold complexes can be detrimental in terms of selectivity and because of their low tolerance to certain functional groups. In these instances, the less-strongly Lewis acidic Pt(II) complexes could be the catalysts of choice. * To whom correspondence should be addressed. E-mail: aechavarren@ iciq.es. † Additional affiliation: Departamento de Quı́mica Orgánica, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain. Scheme 1 Chem. Rev. 2008, 108, 3326–3350 3326

1,728 citations

Journal ArticleDOI
TL;DR: Gold(I) complexes selectively activate π-bonds of alkenes in complex molecular settings, which has been attributed to relativistic effects as discussed by the authors, and are the most effective catalysts for the electrophilic activation of alkynes under homogeneous conditions.
Abstract: 1.1. General Reactivity of Alkyne-Gold(I) Complexes For centuries, gold had been considered a precious, purely decorative inert metal. It was not until 1986 that Ito and Hayashi described the first application of gold(I) in homogeneous catalysis.1 More than one decade later, the first examples of gold(I) activation of alkynes were reported by Teles2 and Tanaka,3 revealing the potential of gold(I) in organic synthesis. Now, gold(I) complexes are the most effective catalysts for the electrophilic activation of alkynes under homogeneous conditions, and a broad range of versatile synthetic tools have been developed for the construction of carbon–carbon or carbon–heteroatom bonds. Gold(I) complexes selectively activate π-bonds of alkynes in complex molecular settings,4−10 which has been attributed to relativistic effects.11−13 In general, no other electrophilic late transition metal shows the breadth of synthetic applications of homogeneous gold(I) catalysts, although in occasions less Lewis acidic Pt(II) or Ag(I) complexes can be used as an alternative,9,10,14,15 particularly in the context of the activation of alkenes.16,17 Highly electrophilic Ga(III)18−22 and In(III)23,24 salts can also be used as catalysts, although often higher catalyst loadings are required. In general, the nucleophilic Markovnikov attack to η2-[AuL]+-activated alkynes 1 forms trans-alkenyl-gold complexes 2 as intermediates (Scheme 1).4,5a,9,10,12,25−29 This activation mode also occurs in gold-catalyzed cycloisomerizations of 1,n-enynes and in hydroarylation reactions, in which the alkene or the arene act as the nucleophile. Scheme 1 Anti-Nucleophilic Attack to η2-[AuL]+-Activated Alkynes

1,260 citations

Journal ArticleDOI
TL;DR: As important advances are being made in the understanding of the mechanistic details of the process, it is becoming increasingly possible to apply this essential reaction and its new variants in a less empirical way.
Abstract: Eighteen years ago in Angewandte Chemie John K. Stille reviewed a novel methodology, which eventually became known by his name, for the coupling of organostannanes with organic electrophiles. Since then that seed has blossomed into a multifaceted methodology full of hidden possibilities to explore, discover, and enjoy. Very recent modifications are making synthetic wishes come true that were only dreamed of a few years ago. Moreover, as important advances are being made in the understanding of the mechanistic details of the process, it is becoming increasingly possible to apply this essential reaction and its new variants in a less empirical way. The purpose of this Review is to give a critical account of this progress.

758 citations

Journal ArticleDOI
TL;DR: Most recent efforts in gold-catalysed transformations are covered, highlighting the wide molecular diversity that can be achieved, in particular with regard to the formation of C-C bonds.

724 citations

Journal ArticleDOI
TL;DR: A mechanism for the Pd-catalyzed arylation that involves a proton abstraction by a carbonate or related ligand and that provides a satisfactory explanation for the experimental data is proposed.
Abstract: Under the usual conditions, the Pd-catalyzed arylation does not involve an electrophilic aromatic substitution reaction. On the basis of DFT calculations, we propose a mechanism for the Pd-catalyzed arylation that involves a proton abstraction by a carbonate or related ligand and that provides a satisfactory explanation for the experimental data.

639 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: This review covers the literature published in 2014 for marine natural products, with 1116 citations referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms.

4,649 citations

Journal ArticleDOI
TL;DR: A review of palladium-catalyzed coupling of CH bonds with organometallic reagents through a PdII/Pd0 catalytic cycle can be found in this paper.
Abstract: Pick your Pd partners: A number of catalytic systems have been developed for palladium-catalyzed CH activation/CC bond formation. Recent studies concerning the palladium(II)-catalyzed coupling of CH bonds with organometallic reagents through a PdII/Pd0 catalytic cycle are discussed (see scheme), and the versatility and practicality of this new mode of catalysis are presented. Unaddressed questions and the potential for development in the field are also addressed. In the past decade, palladium-catalyzed CH activation/CC bond-forming reactions have emerged as promising new catalytic transformations; however, development in this field is still at an early stage compared to the state of the art in cross-coupling reactions using aryl and alkyl halides. This Review begins with a brief introduction of four extensively investigated modes of catalysis for forming CC bonds from CH bonds: PdII/Pd0, PdII/PdIV, Pd0/PdII/PdIV, and Pd0/PdII catalysis. A more detailed discussion is then directed towards the recent development of palladium(II)-catalyzed coupling of CH bonds with organometallic reagents through a PdII/Pd0 catalytic cycle. Despite the progress made to date, improving the versatility and practicality of this new reaction remains a tremendous challenge.

3,533 citations

Journal ArticleDOI
TL;DR: This review focuses on Rh-catalyzed methods for C-H bond functionalization, which have seen widespread success over the course of the last decade and are discussed in detail in the accompanying articles in this special issue of Chemical Reviews.
Abstract: Once considered the 'holy grail' of organometallic chemistry, synthetically useful reactions employing C-H bond activation have increasingly been developed and applied to natural product and drug synthesis over the past decade. The ubiquity and relative low cost of hydrocarbons makes C-H bond functionalization an attractive alternative to classical C-C bond forming reactions such as cross-coupling, which require organohalides and organometallic reagents. In addition to providing an atom economical alternative to standard cross - coupling strategies, C-H bond functionalization also reduces the production of toxic by-products, thereby contributing to the growing field of reactions with decreased environmental impact. In the area of C-C bond forming reactions that proceed via a C-H activation mechanism, rhodium catalysts stand out for their functional group tolerance and wide range of synthetic utility. Over the course of the last decade, many Rh-catalyzed methods for heteroatom-directed C-H bond functionalization have been reported and will be the focus of this review. Material appearing in the literature prior to 2001 has been reviewed previously and will only be introduced as background when necessary. The synthesis of complex molecules from relatively simple precursors has long been a goal for many organic chemists. The ability to selectively functionalize a molecule with minimal pre-activation can streamline syntheses and expand the opportunities to explore the utility of complex molecules in areas ranging from the pharmaceutical industry to materials science. Indeed, the issue of selectivity is paramount in the development of all C-H bond functionalization methods. Several groups have developed elegant approaches towards achieving selectivity in molecules that possess many sterically and electronically similar C-H bonds. Many of these approaches are discussed in detail in the accompanying articles in this special issue of Chemical Reviews. One approach that has seen widespread success involves the use of a proximal heteroatom that serves as a directing group for the selective functionalization of a specific C-H bond. In a survey of examples of heteroatom-directed Rh catalysis, two mechanistically distinct reaction pathways are revealed. In one case, the heteroatom acts as a chelator to bind the Rh catalyst, facilitating reactivity at a proximal site. In this case, the formation of a five-membered metallacycle provides a favorable driving force in inducing reactivity at the desired location. In the other case, the heteroatom initially coordinates the Rh catalyst and then acts to stabilize the formation of a metal-carbon bond at a proximal site. A true test of the utility of a synthetic method is in its application to the synthesis of natural products or complex molecules. Several groups have demonstrated the applicability of C-H bond functionalization reactions towards complex molecule synthesis. Target-oriented synthesis provides a platform to test the effectiveness of a method in unique chemical and steric environments. In this respect, Rh-catalyzed methods for C-H bond functionalization stand out, with several syntheses being described in the literature that utilize C-H bond functionalization in a key step. These syntheses are highlighted following the discussion of the method they employ.

3,210 citations

Journal ArticleDOI
TL;DR: A number of improvements have developed the former process into an industrially very useful and attractive method for the construction of aryl -aryl bonds, but the need still exists for more efficient routes whereby the same outcome is accomplished, but with reduced waste and in fewer steps.
Abstract: The biaryl structural motif is a predominant feature in many pharmaceutically relevant and biologically active compounds. As a result, for over a century 1 organic chemists have sought to develop new and more efficient aryl -aryl bond-forming methods. Although there exist a variety of routes for the construction of aryl -aryl bonds, arguably the most common method is through the use of transition-metalmediated reactions. 2-4 While earlier reports focused on the use of stoichiometric quantities of a transition metal to carry out the desired transformation, modern methods of transitionmetal-catalyzed aryl -aryl coupling have focused on the development of high-yielding reactions achieved with excellent selectivity and high functional group tolerance under mild reaction conditions. Typically, these reactions involve either the coupling of an aryl halide or pseudohalide with an organometallic reagent (Scheme 1), or the homocoupling of two aryl halides or two organometallic reagents. Although a number of improvements have developed the former process into an industrially very useful and attractive method for the construction of aryl -aryl bonds, the need still exists for more efficient routes whereby the same outcome is accomplished, but with reduced waste and in fewer steps. In particular, the obligation to use coupling partners that are both activated is wasteful since it necessitates the installation and then subsequent disposal of stoichiometric activating agents. Furthermore, preparation of preactivated aryl substrates often requires several steps, which in itself can be a time-consuming and economically inefficient process.

3,204 citations