scispace - formally typeset
Search or ask a question
Author

Antonio Ortega

Bio: Antonio Ortega is an academic researcher from University of Southern California. The author has contributed to research in topics: Data compression & Graph (abstract data type). The author has an hindex of 64, co-authored 451 publications receiving 19648 citations. Previous affiliations of Antonio Ortega include Stanford University & Tokyo University of Agriculture and Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: The field of signal processing on graphs merges algebraic and spectral graph theoretic concepts with computational harmonic analysis to process high-dimensional data on graphs as discussed by the authors, which are the analogs to the classical frequency domain and highlight the importance of incorporating the irregular structures of graph data domains when processing signals on graphs.
Abstract: In applications such as social, energy, transportation, sensor, and neuronal networks, high-dimensional data naturally reside on the vertices of weighted graphs. The emerging field of signal processing on graphs merges algebraic and spectral graph theoretic concepts with computational harmonic analysis to process such signals on graphs. In this tutorial overview, we outline the main challenges of the area, discuss different ways to define graph spectral domains, which are the analogs to the classical frequency domain, and highlight the importance of incorporating the irregular structures of graph data domains when processing signals on graphs. We then review methods to generalize fundamental operations such as filtering, translation, modulation, dilation, and downsampling to the graph setting and survey the localized, multiscale transforms that have been proposed to efficiently extract information from high-dimensional data on graphs. We conclude with a brief discussion of open issues and possible extensions.

3,475 citations

Journal ArticleDOI
25 Apr 2018
TL;DR: An overview of core ideas in GSP and their connection to conventional digital signal processing are provided, along with a brief historical perspective to highlight how concepts recently developed build on top of prior research in other areas.
Abstract: Research in graph signal processing (GSP) aims to develop tools for processing data defined on irregular graph domains. In this paper, we first provide an overview of core ideas in GSP and their connection to conventional digital signal processing, along with a brief historical perspective to highlight how concepts recently developed in GSP build on top of prior research in other areas. We then summarize recent advances in developing basic GSP tools, including methods for sampling, filtering, or graph learning. Next, we review progress in several application areas using GSP, including processing and analysis of sensor network data, biological data, and applications to image processing and machine learning.

1,306 citations

Journal ArticleDOI
TL;DR: An overview of rate-distortion (R-D) based optimization techniques and their practical application to image and video coding is provided and two popular techniques for resource allocation are introduced, namely, Lagrangian optimization and dynamic programming.
Abstract: In this article we provide an overview of rate-distortion (R-D) based optimization techniques and their practical application to image and video coding. We begin with a short discussion of classical rate-distortion theory and then we show how in many practical coding scenarios, such as in standards-compliant coding environments, resource allocation can be put in an R-D framework. We then introduce two popular techniques for resource allocation, namely, Lagrangian optimization and dynamic programming. After a discussion of these techniques as well as some of their extensions, we conclude with a quick review of literature in these areas citing a number of applications related to image and video compression and transmission.

925 citations

Journal ArticleDOI
TL;DR: This tutorial overview outlines the main challenges of the emerging field of signal processing on graphs, discusses different ways to define graph spectral domains, which are the analogs to the classical frequency domain, and highlights the importance of incorporating the irregular structures of graph data domains when processing signals on graphs.
Abstract: In applications such as social, energy, transportation, sensor, and neuronal networks, high-dimensional data naturally reside on the vertices of weighted graphs. The emerging field of signal processing on graphs merges algebraic and spectral graph theoretic concepts with computational harmonic analysis to process such signals on graphs. In this tutorial overview, we outline the main challenges of the area, discuss different ways to define graph spectral domains, which are the analogues to the classical frequency domain, and highlight the importance of incorporating the irregular structures of graph data domains when processing signals on graphs. We then review methods to generalize fundamental operations such as filtering, translation, modulation, dilation, and downsampling to the graph setting, and survey the localized, multiscale transforms that have been proposed to efficiently extract information from high-dimensional data on graphs. We conclude with a brief discussion of open issues and possible extensions.

606 citations

Journal ArticleDOI
TL;DR: It is shown how a certain monotonicity property of the dependent R-D curves can be exploited in formulating fast ways to obtain optimal and near-optimal solutions and how to obtain fast solutions that provide nearly optimal full resolution quality while providing much better performance for the subresolution layer.
Abstract: We address the problem of efficient bit allocation in a dependent coding environment. While optimal bit allocation for independently coded signal blocks has been studied in the literature, we extend these techniques to the more general temporally and spatially dependent coding scenarios. Of particular interest are the topical MPEG video coder and multiresolution coders. Our approach uses an operational rate-distortion (R-D) framework for arbitrary quantizer sets. We show how a certain monotonicity property of the dependent R-D curves can be exploited in formulating fast ways to obtain optimal and near-optimal solutions. We illustrate the application of this property in specifying intelligent pruning conditions to eliminate suboptimal operating points for the MPEG allocation problem, for which we also point out fast nearly-optimal heuristics. Additionally, we formulate an efficient allocation strategy for multiresolution coders, using the spatial pyramid coder as an example. We then extend this analysis to a spatio-temporal 3-D pyramidal coding scheme. We tackle the compatibility problem of optimizing full-resolution quality while simultaneously catering to subresolution bit rate or quality constraints. We show how to obtain fast solutions that provide nearly optimal (typically within 0.3 dB) full resolution quality while providing much better performance for the subresolution layer (typically 2-3 dB better than the full-resolution optimal solution). >

492 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

Journal ArticleDOI

6,278 citations

01 Aug 2000
TL;DR: Assessment of medical technology in the context of commercialization with Bioentrepreneur course, which addresses many issues unique to biomedical products.
Abstract: BIOE 402. Medical Technology Assessment. 2 or 3 hours. Bioentrepreneur course. Assessment of medical technology in the context of commercialization. Objectives, competition, market share, funding, pricing, manufacturing, growth, and intellectual property; many issues unique to biomedical products. Course Information: 2 undergraduate hours. 3 graduate hours. Prerequisite(s): Junior standing or above and consent of the instructor.

4,833 citations

Journal ArticleDOI
TL;DR: This article provides a comprehensive overview of graph neural networks (GNNs) in data mining and machine learning fields and proposes a new taxonomy to divide the state-of-the-art GNNs into four categories, namely, recurrent GNNS, convolutional GNN’s, graph autoencoders, and spatial–temporal Gnns.
Abstract: Deep learning has revolutionized many machine learning tasks in recent years, ranging from image classification and video processing to speech recognition and natural language understanding. The data in these tasks are typically represented in the Euclidean space. However, there is an increasing number of applications, where data are generated from non-Euclidean domains and are represented as graphs with complex relationships and interdependency between objects. The complexity of graph data has imposed significant challenges on the existing machine learning algorithms. Recently, many studies on extending deep learning approaches for graph data have emerged. In this article, we provide a comprehensive overview of graph neural networks (GNNs) in data mining and machine learning fields. We propose a new taxonomy to divide the state-of-the-art GNNs into four categories, namely, recurrent GNNs, convolutional GNNs, graph autoencoders, and spatial–temporal GNNs. We further discuss the applications of GNNs across various domains and summarize the open-source codes, benchmark data sets, and model evaluation of GNNs. Finally, we propose potential research directions in this rapidly growing field.

4,584 citations