scispace - formally typeset
Search or ask a question
Author

Antonio Ramos

Other affiliations: University of Southampton
Bio: Antonio Ramos is an academic researcher from University of Seville. The author has contributed to research in topics: Electric field & Dielectrophoresis. The author has an hindex of 33, co-authored 126 publications receiving 6899 citations. Previous affiliations of Antonio Ramos include University of Southampton.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the frequency dependency and magnitude of electrothermally induced fluid flow are discussed for low frequencies (up to 500 kHz) and the effects of Brownian motion, diffusion and buoyancy force are discussed in the context of the controlled manipulation of sub-micrometre particles.
Abstract: Ac electrokinetics is concerned with the study of the movement and behaviour of particles in suspension when they are subjected to ac electrical fields. The development of new microfabricated electrode structures has meant that particles down to the size of macromolecules have been manipulated, but on this scale forces other than electrokinetic affect particles behaviour. The high electrical fields, which are required to produce sufficient force to move a particle, result in heat dissipation in the medium. This in turn produces thermal gradients, which may give rise to fluid motion through buoyancy, and electrothermal forces. In this paper, the frequency dependency and magnitude of electrothermally induced fluid flow are discussed. A new type of fluid flow is identified for low frequencies (up to 500 kHz). Our preliminary observations indicate that it has its origin in the action of a tangential electrical field on the diffuse double layer of the microfabricated electrodes. The effects of Brownian motion, diffusion and the buoyancy force are discussed in the context of the controlled manipulation of sub-micrometre particles. The orders of magnitude of the various forces experienced by a sub-micrometre latex particle in a model electrode structure are calculated. The results are compared with experiment and the relative influence of each type of force on the overall behaviour of particles is described.

1,184 citations

Journal ArticleDOI
TL;DR: In this article, the movement and behaviour of particles suspended in aqueous solutions subjected to non-uniform ac electric fields is examined and the relative influence of each type of force is described.
Abstract: The movement and behaviour of particles suspended in aqueous solutions subjected to non-uniform ac electric fields is examined. The ac electric fields induce movement of polarizable particles, a phenomenon known as dielectrophoresis. The high strength electric fields that are often used in separation systems can give rise to fluid motion, which in turn results in a viscous drag on the particle. The electric field generates heat, leading to volume forces in the liquid. Gradients in conductivity and permittivity give rise to electrothermal forces and gradients in mass density to buoyancy. In addition, non-uniform ac electric fields produce forces on the induced charges in the diffuse double layer on the electrodes. This causes a steady fluid motion termed ac electro-osmosis. The effects of Brownian motion are also discussed in this context. The orders of magnitude of the various forces experienced by a particle in a model microelectrode system are estimated. The results are discussed in relation to experiments and the relative influence of each type of force is described.

676 citations

Journal ArticleDOI
TL;DR: Measurements of the fluid velocity as a function of frequency and position across the electrode indicate that the flow occurs due to electroosmotic stress arising from the interaction of the electric field and the electrical double layer on the electrodes.

500 citations

Journal ArticleDOI
TL;DR: The detailed experimental measurements of the velocity of fluid flow on microelectrodes at frequencies below the charge relaxation frequency of the electrolyte are presented and discussed in terms of a linear model of ac electroosmosis.
Abstract: Under the influence of an ac electric field, electrolytes on planar microelectrodes exhibit fluid flow. The nonuniform electric field generated by the electrodes interacts with the suspending fluid through a number of mechanisms, giving rise to body forces and fluid flow. This paper presents the detailed experimental measurements of the velocity of fluid flow on microelectrodes at frequencies below the charge relaxation frequency of the electrolyte. The velocity of latex tracer particles was measured as a function of applied signal frequency and potential, electrolyte conductivity, and position on the electrode surface. The data are discussed in terms of a linear model of ac electroosmosis: the interaction of the nonuniform ac field and the induced electrical double layer.

496 citations

Journal ArticleDOI
TL;DR: Experimental observations of the fluid flow profile obtained by superimposing images of particle movement in a plane normal to the electrode surface are presented and good agreement is found between the numerical and experimental streamlines.
Abstract: The application of a nonuniform ac electric field to an electrolyte using coplanar microelectrodes results in steady fluid flow. The flow has its origin in the interaction of the tangential component of the nonuniform field with the induced charge in the electrical double layer on the electrode surfaces. Termed ac electro-osmosis, the flow has been studied experimentally and theoretically using linear analysis. This paper presents experimental observations of the fluid flow profile obtained by superimposing images of particle movement in a plane normal to the electrode surface. These experimental streamlines demonstrate that the fluid flow is driven at the surface of the electrodes. Experimental measurements of the impedance of the electrical double layer on the electrodes are also presented. The potential drop across the double layer at the surface of the electrodes is calculated numerically using a linear double layer model, and also using the impedance of the double layer obtained from experimental data. The ac electro-osmotic flow at the surface of the electrodes is then calculated using the Helmholtz-Smoluchowski formula. The bulk fluid flow driven by this surface velocity is numerically calculated as a function of frequency and good agreement is found between the numerical and experimental streamlines.

404 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A review of the physics of small volumes (nanoliters) of fluids is presented, as parametrized by a series of dimensionless numbers expressing the relative importance of various physical phenomena as mentioned in this paper.
Abstract: Microfabricated integrated circuits revolutionized computation by vastly reducing the space, labor, and time required for calculations. Microfluidic systems hold similar promise for the large-scale automation of chemistry and biology, suggesting the possibility of numerous experiments performed rapidly and in parallel, while consuming little reagent. While it is too early to tell whether such a vision will be realized, significant progress has been achieved, and various applications of significant scientific and practical interest have been developed. Here a review of the physics of small volumes (nanoliters) of fluids is presented, as parametrized by a series of dimensionless numbers expressing the relative importance of various physical phenomena. Specifically, this review explores the Reynolds number Re, addressing inertial effects; the Peclet number Pe, which concerns convective and diffusive transport; the capillary number Ca expressing the importance of interfacial tension; the Deborah, Weissenberg, and elasticity numbers De, Wi, and El, describing elastic effects due to deformable microstructural elements like polymers; the Grashof and Rayleigh numbers Gr and Ra, describing density-driven flows; and the Knudsen number, describing the importance of noncontinuum molecular effects. Furthermore, the long-range nature of viscous flows and the small device dimensions inherent in microfluidics mean that the influence of boundaries is typically significant. A variety of strategies have been developed to manipulate fluids by exploiting boundary effects; among these are electrokinetic effects, acoustic streaming, and fluid-structure interactions. The goal is to describe the physics behind the rich variety of fluid phenomena occurring on the nanoliter scale using simple scaling arguments, with the hopes of developing an intuitive sense for this occasionally counterintuitive world.

4,044 citations

Journal ArticleDOI
TL;DR: An overview of flows in microdevices with focus on electrokinetics, mixing and dispersion, and multiphase flows is provided, highlighting topics important for the description of the fluid dynamics: driving forces, geometry, and the chemical characteristics of surfaces.
Abstract: Microfluidic devices for manipulating fluids are widespread and finding uses in many scientific and industrial contexts. Their design often requires unusual geometries and the interplay of multiple physical effects such as pressure gradients, electrokinetics, and capillarity. These circumstances lead to interesting variants of well-studied fluid dynamical problems and some new fluid responses. We provide an overview of flows in microdevices with focus on electrokinetics, mixing and dispersion, and multiphase flows. We highlight topics important for the description of the fluid dynamics: driving forces, geometry, and the chemical characteristics of surfaces.

3,307 citations

Journal ArticleDOI
TL;DR: In this article, the authors provide a guided tour through the development of artificial self-propelling microparticles and nanoparticles and their application to the study of nonequilibrium phenomena, as well as the open challenges that the field is currently facing.
Abstract: Differently from passive Brownian particles, active particles, also known as self-propelled Brownian particles or microswimmers and nanoswimmers, are capable of taking up energy from their environment and converting it into directed motion. Because of this constant flow of energy, their behavior can be explained and understood only within the framework of nonequilibrium physics. In the biological realm, many cells perform directed motion, for example, as a way to browse for nutrients or to avoid toxins. Inspired by these motile microorganisms, researchers have been developing artificial particles that feature similar swimming behaviors based on different mechanisms. These man-made micromachines and nanomachines hold a great potential as autonomous agents for health care, sustainability, and security applications. With a focus on the basic physical features of the interactions of self-propelled Brownian particles with a crowded and complex environment, this comprehensive review will provide a guided tour through its basic principles, the development of artificial self-propelling microparticles and nanoparticles, and their application to the study of nonequilibrium phenomena, as well as the open challenges that the field is currently facing.

2,188 citations

Journal ArticleDOI
TL;DR: Active Brownian particles, also referred to as microswimmers and nanoswimmers, are biological or manmade microscopic and nanoscopic particles that can self-propel as mentioned in this paper.
Abstract: Active Brownian particles, also referred to as microswimmers and nanoswimmers, are biological or manmade microscopic and nanoscopic particles that can self-propel. Because of their activity, their behavior can only be explained and understood within the framework of nonequilibrium physics. In the biological realm, many cells perform active Brownian motion, for example, when moving away from toxins or towards nutrients. Inspired by these motile microorganisms, researchers have been developing artificial active particles that feature similar swimming behaviors based on different mechanisms; these manmade micro- and nanomachines hold a great potential as autonomous agents for healthcare, sustainability, and security applications. With a focus on the basic physical features of the interactions of active Brownian particles with a crowded and complex environment, this comprehensive review will put the reader at the very forefront of the field of active Brownian motion, providing a guided tour through its basic principles, the development of artificial self-propelling micro- and nanoparticles, and their application to the study of nonequilibrium phenomena, as well as the open challenges that the field is currently facing.

1,258 citations

Journal ArticleDOI
TL;DR: In the mid 1960s GI Taylor introduced the leaky dielectric model to explain the behavior of droplets deformed by a steady field, and JR Melcher used it extensively to develop electrohydrodynamics.
Abstract: Electrohydrodynamics deals with fluid motion induced by electric fields. In the mid 1960s GI Taylor introduced the leaky dielectric model to explain the behavior of droplets deformed by a steady field, and JR Melcher used it extensively to develop electrohydrodynamics. This review deals with the foundations of the leaky dielectric model and experimental tests designed to probe its usefulness. Although the early experimental studies supported the qualitative features of the model, quantitative agreement was poor. Recent studies are in better agreement with the theory. Even though the model was originally intended to deal with sharp interfaces, contemporary studies with suspensions also agree with the theory. Clearly the leaky dielectric model is more general than originally envisioned.

1,253 citations