scispace - formally typeset
Search or ask a question

Showing papers by "Antonio Torralba published in 2007"


Journal ArticleDOI
TL;DR: In the real world, objects never occur in isolation; they co-vary with other objects and particular environments, providing a rich source of contextual associations to be exploited by the visual system.

964 citations


Journal ArticleDOI
TL;DR: A multitask learning procedure, based on boosted decision stumps, that reduces the computational and sample complexity by finding common features that can be shared across the classes (and/or views) and considerably reduce the computational cost of multiclass object detection.
Abstract: We consider the problem of detecting a large number of different classes of objects in cluttered scenes. Traditional approaches require applying a battery of different classifiers to the image, at multiple locations and scales. This can be slow and can require a lot of training data since each classifier requires the computation of many different image features. In particular, for independently trained detectors, the (runtime) computational complexity and the (training-time) sample complexity scale linearly with the number of classes to be detected. We present a multitask learning procedure, based on boosted decision stumps, that reduces the computational and sample complexity by finding common features that can be shared across the classes (and/or views). The detectors for each class are trained jointly, rather than independently. For a given performance level, the total number of features required and, therefore, the runtime cost of the classifier, is observed to scale approximately logarithmically with the number of classes. The features selected by joint training are generic edge-like features, whereas the features chosen by training each class separately tend to be more object-specific. The generic features generalize better and considerably reduce the computational cost of multiclass object detection

812 citations


Proceedings Article
03 Dec 2007
TL;DR: In this article, a probabilistic model is proposed to transfer the labels from the retrieval set to the input image, in an appropriate representation, to obtain hypotheses for object identities and locations.
Abstract: Current object recognition systems can only recognize a limited number of object categories; scaling up to many categories is the next challenge. We seek to build a system to recognize and localize many different object categories in complex scenes. We achieve this through a simple approach: by matching the input image, in an appropriate representation, to images in a large training set of labeled images. Due to regularities in object identities across similar scenes, the retrieved matches provide hypotheses for object identities and locations. We build a probabilistic model to transfer the labels from the retrieval set to the input image. We demonstrate the effectiveness of this approach and study algorithm component contributions using held-out test sets from the LabelMe database.

101 citations