scispace - formally typeset
Search or ask a question
Author

Antonio Torralba

Other affiliations: Vassar College, Nvidia, Carleton College
Bio: Antonio Torralba is an academic researcher from Massachusetts Institute of Technology. The author has contributed to research in topics: Computer science & Object detection. The author has an hindex of 119, co-authored 388 publications receiving 84607 citations. Previous affiliations of Antonio Torralba include Vassar College & Nvidia.


Papers
More filters
Proceedings ArticleDOI
01 Jun 2016
TL;DR: This paper presents an algorithm that synthesizes sound from silent videos of people hitting and scratching objects with a drumstick, using a recurrent neural network to predict sound features from videos and then producing a waveform from these features with an example-based synthesis procedure.
Abstract: Objects make distinctive sounds when they are hit or scratched. These sounds reveal aspects of an object's material properties, as well as the actions that produced them. In this paper, we propose the task of predicting what sound an object makes when struck as a way of studying physical interactions within a visual scene. We present an algorithm that synthesizes sound from silent videos of people hitting and scratching objects with a drumstick. This algorithm uses a recurrent neural network to predict sound features from videos and then produces a waveform from these features with an example-based synthesis procedure. We show that the sounds predicted by our model are realistic enough to fool participants in a "real or fake" psychophysical experiment, and that they convey significant information about material properties and physical interactions.

284 citations

Posted Content
TL;DR: In this article, a framework that capitalizes on temporal structure in unlabeled video to learn to anticipate human actions and objects is presented. But this task is challenging partly because it requires leveraging extensive knowledge of the world that is difficult to write down.
Abstract: Anticipating actions and objects before they start or appear is a difficult problem in computer vision with several real-world applications. This task is challenging partly because it requires leveraging extensive knowledge of the world that is difficult to write down. We believe that a promising resource for efficiently learning this knowledge is through readily available unlabeled video. We present a framework that capitalizes on temporal structure in unlabeled video to learn to anticipate human actions and objects. The key idea behind our approach is that we can train deep networks to predict the visual representation of images in the future. Visual representations are a promising prediction target because they encode images at a higher semantic level than pixels yet are automatic to compute. We then apply recognition algorithms on our predicted representation to anticipate objects and actions. We experimentally validate this idea on two datasets, anticipating actions one second in the future and objects five seconds in the future.

282 citations

Proceedings Article
07 Dec 2009
TL;DR: This paper uses the convergence of the eigenvectors of the normalized graph Laplacian to eigenfunctions of weighted Laplace-Beltrami operators to obtain highly efficient approximations for semi-supervised learning that are linear in the number of images.
Abstract: With the advent of the Internet it is now possible to collect hundreds of millions of images. These images come with varying degrees of label information. "Clean labels" can be manually obtained on a small fraction, "noisy labels" may be extracted automatically from surrounding text, while for most images there are no labels at all. Semi-supervised learning is a principled framework for combining these different label sources. However, it scales polynomially with the number of images, making it impractical for use on gigantic collections with hundreds of millions of images and thousands of classes. In this paper we show how to utilize recent results in machine learning to obtain highly efficient approximations for semi-supervised learning that are linear in the number of images. Specifically, we use the convergence of the eigenvectors of the normalized graph Laplacian to eigenfunctions of weighted Laplace-Beltrami operators. Our algorithm enables us to apply semi-supervised learning to a database of 80 million images gathered from the Internet.

279 citations

Journal ArticleDOI
TL;DR: It is shown that the statistics of low-level features across the whole image can be used to prime the presence or absence of objects in the scene and to predict their location, scale, and appearance before exploring the image.
Abstract: Models of visual attention have focused predominantly on bottom-up approaches that ignored structured contextual and scene information. I propose a model of contextual cueing for attention guidance based on the global scene configuration. It is shown that the statistics of low-level features across the whole image can be used to prime the presence or absence of objects in the scene and to predict their location, scale, and appearance before exploring the image. In this scheme, visual context information can become available early in the visual processing chain, which allows modulation of the saliency of image regions and provides an efficient shortcut for object detection and recognition.

277 citations

Journal ArticleDOI
TL;DR: In this article, the authors evaluated computational models of search guidance from three sources: saliency, target features, and scene context, and found that the scene context component provided the most explanatory power.
Abstract: How predictable are human eye movements during search in real world scenes? We recorded 14 observers' eye movements as they performed a search task (person detection) in 912 outdoor scenes. Observers were highly consistent in the regions fixated during search, even when the target was absent from the scene. These eye movements were used to evaluate computational models of search guidance from three sources: saliency, target features, and scene context. Each of these models independently outperformed a cross-image control in predicting human fixations. Models that combined sources of guidance ultimately predicted 94% of human agreement, with the scene context component providing the most explanatory power. None of the models, however, could reach the precision and fidelity of an attentional map defined by human fixations. This work puts forth a benchmark for computational models of search in real world scenes. Further improvements in modeling should capture mechanisms underlying the selectivity of observer's fixations during search.

264 citations


Cited by
More filters
Proceedings Article
03 Dec 2012
TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Abstract: We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 37.5% and 17.0% which is considerably better than the previous state-of-the-art. The neural network, which has 60 million parameters and 650,000 neurons, consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax. To make training faster, we used non-saturating neurons and a very efficient GPU implementation of the convolution operation. To reduce overriding in the fully-connected layers we employed a recently-developed regularization method called "dropout" that proved to be very effective. We also entered a variant of this model in the ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%, compared to 26.2% achieved by the second-best entry.

73,978 citations

Proceedings ArticleDOI
Jia Deng1, Wei Dong1, Richard Socher1, Li-Jia Li1, Kai Li1, Li Fei-Fei1 
20 Jun 2009
TL;DR: A new database called “ImageNet” is introduced, a large-scale ontology of images built upon the backbone of the WordNet structure, much larger in scale and diversity and much more accurate than the current image datasets.
Abstract: The explosion of image data on the Internet has the potential to foster more sophisticated and robust models and algorithms to index, retrieve, organize and interact with images and multimedia data. But exactly how such data can be harnessed and organized remains a critical problem. We introduce here a new database called “ImageNet”, a large-scale ontology of images built upon the backbone of the WordNet structure. ImageNet aims to populate the majority of the 80,000 synsets of WordNet with an average of 500-1000 clean and full resolution images. This will result in tens of millions of annotated images organized by the semantic hierarchy of WordNet. This paper offers a detailed analysis of ImageNet in its current state: 12 subtrees with 5247 synsets and 3.2 million images in total. We show that ImageNet is much larger in scale and diversity and much more accurate than the current image datasets. Constructing such a large-scale database is a challenging task. We describe the data collection scheme with Amazon Mechanical Turk. Lastly, we illustrate the usefulness of ImageNet through three simple applications in object recognition, image classification and automatic object clustering. We hope that the scale, accuracy, diversity and hierarchical structure of ImageNet can offer unparalleled opportunities to researchers in the computer vision community and beyond.

49,639 citations

Proceedings ArticleDOI
07 Jun 2015
TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Abstract: We propose a deep convolutional neural network architecture codenamed Inception that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14). The main hallmark of this architecture is the improved utilization of the computing resources inside the network. By a carefully crafted design, we increased the depth and width of the network while keeping the computational budget constant. To optimize quality, the architectural decisions were based on the Hebbian principle and the intuition of multi-scale processing. One particular incarnation used in our submission for ILSVRC14 is called GoogLeNet, a 22 layers deep network, the quality of which is assessed in the context of classification and detection.

40,257 citations

Book
18 Nov 2016
TL;DR: Deep learning as mentioned in this paper is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts, and it is used in many applications such as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames.
Abstract: Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

38,208 citations

Journal ArticleDOI
TL;DR: A large, deep convolutional neural network was trained to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes and employed a recently developed regularization method called "dropout" that proved to be very effective.
Abstract: We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 37.5% and 17.0%, respectively, which is considerably better than the previous state-of-the-art. The neural network, which has 60 million parameters and 650,000 neurons, consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully connected layers with a final 1000-way softmax. To make training faster, we used non-saturating neurons and a very efficient GPU implementation of the convolution operation. To reduce overfitting in the fully connected layers we employed a recently developed regularization method called "dropout" that proved to be very effective. We also entered a variant of this model in the ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%, compared to 26.2% achieved by the second-best entry.

33,301 citations