scispace - formally typeset
Search or ask a question
Author

Antonio Torralba

Other affiliations: Vassar College, Nvidia, Carleton College
Bio: Antonio Torralba is an academic researcher from Massachusetts Institute of Technology. The author has contributed to research in topics: Computer science & Object detection. The author has an hindex of 119, co-authored 388 publications receiving 84607 citations. Previous affiliations of Antonio Torralba include Vassar College & Nvidia.


Papers
More filters
Proceedings Article
07 Dec 2015
TL;DR: A deep neural network-based approach for gaze-following and a new benchmark dataset, GazeFollow, for thorough evaluation are proposed and it is shown that this approach produces reliable results, even when viewing only the back of the head.
Abstract: Humans have the remarkable ability to follow the gaze of other people to identify what they are looking at. Following eye gaze, or gaze-following, is an important ability that allows us to understand what other people are thinking, the actions they are performing, and even predict what they might do next. Despite the importance of this topic, this problem has only been studied in limited scenarios within the computer vision community. In this paper, we propose a deep neural network-based approach for gaze-following and a new benchmark dataset, GazeFollow, for thorough evaluation. Given an image and the location of a head, our approach follows the gaze of the person and identifies the object being looked at. Our deep network is able to discover how to extract head pose and gaze orientation, and to select objects in the scene that are in the predicted line of sight and likely to be looked at (such as televisions, balls and food). The quantitative evaluation shows that our approach produces reliable results, even when viewing only the back of the head. While our method outperforms several baseline approaches, we are still far from reaching human performance on this task. Overall, we believe that gaze-following is a challenging and important problem that deserves more attention from the community.

165 citations

Proceedings ArticleDOI
13 Apr 2021
TL;DR: DatasetGAN as discussed by the authors uses GANs to generate high-quality semantically segmented images, which can then be used for training any computer vision architecture just as real datasets are.
Abstract: We introduce DatasetGAN: an automatic procedure to generate massive datasets of high-quality semantically segmented images requiring minimal human effort. Current deep networks are extremely data-hungry, benefiting from training on large-scale datasets, which are time consuming to annotate. Our method relies on the power of recent GANs to generate realistic images. We show how the GAN latent code can be decoded to produce a semantic segmentation of the image. Training the decoder only needs a few labeled examples to generalize to the rest of the latent space, resulting in an infinite annotated dataset generator! These generated datasets can then be used for training any computer vision architecture just as real datasets are. As only a few images need to be manually segmented, it becomes possible to annotate images in extreme detail and generate datasets with rich object and part segmentations. To showcase the power of our approach, we generated datasets for 7 image segmentation tasks which include pixel-level labels for 34 human face parts, and 32 car parts. Our approach outperforms all semi-supervised baselines significantly and is on par with fully supervised methods, which in some cases require as much as 100x more annotated data as our method.

162 citations

Journal ArticleDOI
TL;DR: This article collected about 500 trials per cell per observer for both target-present and target-absent displays in each of three classic search tasks: feature search, with the target defined by color, conjunction search, and spatial configuration search for a 2 among distractor 5s.
Abstract: Many visual search experiments measure response time (RT) as their primary dependent variable. Analyses typically focus on mean (or median) RT. However, given enough data, the RT distribution can be a rich source of information. For this paper, we collected about 500 trials per cell per observer for both target-present and target-absent displays in each of three classic search tasks: feature search, with the target defined by color; conjunction search, with the target defined by both color and orientation; and spatial configuration search for a 2 among distractor 5s. This large data set allows us to characterize the RT distributions in detail. We present the raw RT distributions and fit several psychologically motivated functions (ex-Gaussian, ex-Wald, Gamma, and Weibull) to the data. We analyze and interpret parameter trends from these four functions within the context of theories of visual search.

156 citations

Posted Content
TL;DR: A large scale framework that capitalizes on temporal structure in unlabeled video to learn to anticipate both actions and objects in the future, and suggests that learning with unlabeling videos significantly helps forecast actions and anticipate objects.
Abstract: In many computer vision applications, machines will need to reason beyond the present, and predict the future. This task is challenging because it requires leveraging extensive commonsense knowledge of the world that is difficult to write down. We believe that a promising resource for efficiently obtaining this knowledge is through the massive amounts of readily available unlabeled video. In this paper, we present a large scale framework that capitalizes on temporal structure in unlabeled video to learn to anticipate both actions and objects in the future. The key idea behind our approach is that we can train deep networks to predict the visual representation of images in the future. We experimentally validate this idea on two challenging "in the wild" video datasets, and our results suggest that learning with unlabeled videos significantly helps forecast actions and anticipate objects.

155 citations

Proceedings ArticleDOI
01 Oct 2019
TL;DR: The Human Action Clips and Segments (HACS) dataset as discussed by the authors is a large-scale dataset for action proposal generation and temporal localization from web videos, which contains 1.5M annotated clips sampled from 504k untrimmed videos, and 139K action segments densely annotated in 50k videos spanning 200 action categories.
Abstract: This paper presents a new large-scale dataset for recognition and temporal localization of human actions collected from Web videos. We refer to it as HACS (Human Action Clips and Segments). We leverage consensus and disagreement among visual classifiers to automatically mine candidate short clips from unlabeled videos, which are subsequently validated by human annotators. The resulting dataset is dubbed HACS Clips. Through a separate process we also collect annotations defining action segment boundaries. This resulting dataset is called HACS Segments. Overall, HACS Clips consists of 1.5M annotated clips sampled from 504K untrimmed videos, and HACS Segments contains 139K action segments densely annotated in 50K untrimmed videos spanning 200 action categories. HACS Clips contains more labeled examples than any existing video benchmark. This renders our dataset both a large-scale action recognition benchmark and an excellent source for spatiotemporal feature learning. In our transfer learning experiments on three target datasets, HACS Clips outperforms Kinetics-600, Moments-In-Time and Sports1M as a pretraining source. On HACS Segments, we evaluate state-of-the-art methods of action proposal generation and action localization, and highlight the new challenges posed by our dense temporal annotations.

155 citations


Cited by
More filters
Proceedings Article
03 Dec 2012
TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Abstract: We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 37.5% and 17.0% which is considerably better than the previous state-of-the-art. The neural network, which has 60 million parameters and 650,000 neurons, consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax. To make training faster, we used non-saturating neurons and a very efficient GPU implementation of the convolution operation. To reduce overriding in the fully-connected layers we employed a recently-developed regularization method called "dropout" that proved to be very effective. We also entered a variant of this model in the ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%, compared to 26.2% achieved by the second-best entry.

73,978 citations

Proceedings ArticleDOI
Jia Deng1, Wei Dong1, Richard Socher1, Li-Jia Li1, Kai Li1, Li Fei-Fei1 
20 Jun 2009
TL;DR: A new database called “ImageNet” is introduced, a large-scale ontology of images built upon the backbone of the WordNet structure, much larger in scale and diversity and much more accurate than the current image datasets.
Abstract: The explosion of image data on the Internet has the potential to foster more sophisticated and robust models and algorithms to index, retrieve, organize and interact with images and multimedia data. But exactly how such data can be harnessed and organized remains a critical problem. We introduce here a new database called “ImageNet”, a large-scale ontology of images built upon the backbone of the WordNet structure. ImageNet aims to populate the majority of the 80,000 synsets of WordNet with an average of 500-1000 clean and full resolution images. This will result in tens of millions of annotated images organized by the semantic hierarchy of WordNet. This paper offers a detailed analysis of ImageNet in its current state: 12 subtrees with 5247 synsets and 3.2 million images in total. We show that ImageNet is much larger in scale and diversity and much more accurate than the current image datasets. Constructing such a large-scale database is a challenging task. We describe the data collection scheme with Amazon Mechanical Turk. Lastly, we illustrate the usefulness of ImageNet through three simple applications in object recognition, image classification and automatic object clustering. We hope that the scale, accuracy, diversity and hierarchical structure of ImageNet can offer unparalleled opportunities to researchers in the computer vision community and beyond.

49,639 citations

Proceedings ArticleDOI
07 Jun 2015
TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Abstract: We propose a deep convolutional neural network architecture codenamed Inception that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14). The main hallmark of this architecture is the improved utilization of the computing resources inside the network. By a carefully crafted design, we increased the depth and width of the network while keeping the computational budget constant. To optimize quality, the architectural decisions were based on the Hebbian principle and the intuition of multi-scale processing. One particular incarnation used in our submission for ILSVRC14 is called GoogLeNet, a 22 layers deep network, the quality of which is assessed in the context of classification and detection.

40,257 citations

Book
18 Nov 2016
TL;DR: Deep learning as mentioned in this paper is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts, and it is used in many applications such as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames.
Abstract: Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

38,208 citations

Journal ArticleDOI
TL;DR: A large, deep convolutional neural network was trained to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes and employed a recently developed regularization method called "dropout" that proved to be very effective.
Abstract: We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 37.5% and 17.0%, respectively, which is considerably better than the previous state-of-the-art. The neural network, which has 60 million parameters and 650,000 neurons, consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully connected layers with a final 1000-way softmax. To make training faster, we used non-saturating neurons and a very efficient GPU implementation of the convolution operation. To reduce overfitting in the fully connected layers we employed a recently developed regularization method called "dropout" that proved to be very effective. We also entered a variant of this model in the ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%, compared to 26.2% achieved by the second-best entry.

33,301 citations